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ABSTRACT

In the past decade, the necessity for numerical quality in Direct Nume3icallations (DNS) and
Large Eddy Simulations (LES) of turbulent flows, has been recognigedamy authors among which
Ghosal[1] andChow et al[2]. In a fully resolved DNS, the smallest resolved scales are locatekdar
the dissipation range. The energy-content of those small scales is tiyuswall compared to those of
the largest resolved scales. However, in LES, the smallest resolvied seca part of the inertial sub-
range and thus contain still a significant amount of energy compared tagfestiacales. Therefore, it
might be reasonable to assume that numerical accuracy on the small scelatvisly more important
for LES then for DNS. Moreover, some advanced subgrid modelling teaba such as the dynamic
procedure or multiscale modelling strongly rely on the smallest resolved sndlésS, which make
them even more important in terms of accuracy. Good numerical quality faffardable LES is thus
vital for accurate flow prediction as it directly influences resolved plsysscwell as subgrid physics.
Aside from aliasing errors, which should be prevented by eliminating sbalgmdx. = %mmm, finite
difference errors are mainly responsible for the loss of numericakracguSince it is highly desirable
in LES, to maximize the ratio between the physical resolution and the grid resplitie, avoiding
computational overhead, standard second order central scheme@h’lm/srufflmentGhosal[l] and
Chow et al.[2] recommend a filter-to-grid rau% Z when using second order central schemes.
This could be prohibitively expensive for most computations. Therefame could apply higher or-
der discretizations allowing larger filter-to-grid ratio’s. However, atakle dispersion errors up to
Ke = %chm require at least a standard tenth order central scheme, or comp&csé&tame, which
leads again to increased complexity and/or computational costs.

In the present work, we develop a low-dispersive dynamic finite diffezescheme for Large Eddy
Simulation. The scheme, inspired by the workkafaepen et al[3], is constructed by combining Tay-
lor expansions on 2 different grid resolutions which is reminiscent to Rilsloa Extrapolation. The
technique has proved successful for obtaining higher accuracy indaffoms inFauconnier et al[4].
Here, we refine the technique for Large Eddy Simulation. The resultintinean scheme contains a
dynamically obtained coefficient optimized according to the flow physics.stheme leads to very
high accuracy for the higher wavenumbers ug{;fnea; = % while the accuracy on the lower wavenum-
bers remains at least second order. We also present a linearizezhvafrshis scheme leading to an



equivalent of the Dispersion-relation-preserving schemi@of et al[5]. In contrast to the work ofam
et al.[5], we optimize the linearized scheme for smallest resolved scales cl%%jo: % instead of

Ke 1

Kmazx

The dyngmic scheme as well as its linearized variant have been tested apadtD sawtooth profile
(figure 1, left) and a 3D turbulent field (figure 1, right), by comparingespectra following the work
of Chow et al[2]. So far, promising results are obtained. We will further systematicallgstigate the
numerical performance of the schemes, and the impact of the improvediosimethe subgrid mod-
elling in an a posteriori study on Large Eddy Simulations of a 1D burgerateouand a Taylor-Green
Vortex Flow. We will report on this study at the conference.
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Figure 1:Error spectrum of derivative (left) and nonlinear force (right). (o), 2" order central; (),
4% order central; (7), 6" order central; ¢), 8" order central; ), 10** order central;(x), Dynamic
Schemg(x), Linearized dynamic schemg—), k. = %mm(w
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