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A thermoelectromechanical model for the analysis of smart structures
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ABSTRACT

Due to the increasing interest in integrating piezoelectric materials into structures for static and
dynamic control, many models, describing their behaviour, have been developed with varying levels
of simplification. The present paper deals with the fully coupled thermoelectromechanical analysis of
piezolaminated structures in the sense mentioned above, including the geometrical and thermal non-
linear effects. A thermodynamically consistent continuum mechanics based framework is developed,
which includes the conservation of mass, linear and angular momentum and the conservation of energy.
The second principle of thermodynamics is used to derive the restrictions for the constitutive equations
using the Coleman-Noll analysis approach. The resulting set of equations is more general and valid for
a wider class of problems than most models published in literature. The interested reader is referred to
[1] and [2].

Due to the possibly large deformations it is important to distinguish between spatial and material quan-
tities, which refer respectively to either the deformed or the initial configuration. Spatial quantities and
the tensor elements expressed in the deformed base vector system ḡi or ḡi, are denoted with a bar on
top. Further, the investigated object is parameterised by Θ1, Θ2 and Θ3, resulting in the base vectors
gi = r,i, where r denotes the position vector and [ ],i the partial derivative along Θi.
Due to the interaction between the polarisation and the electric field, body forces and moments emerge.
With the definition of the polarisation p̄ dV̄ = dQdk, it follows that

ef̄ =
(

p̄ · ∇̄
)

Ē and em̄ = p̄ × Ē, (1)

which denote the ponderomotoric force and the electrically induced body moment density. The momen-
tum conservation can now be written as

∇̄σ + ef̄ + ρ̄
(

b̄ − ϋ
)

= 0, (2)

where σ includes the Cauchy and Maxwell stress tensor. The mass density ρ̄, is determined by the mass
conservation law

ρ̄
√

ḡ = ρ
√

g or
(

˙̄ρ + ρ̄∇̄ · υ̇
)

dV̄ = 0. (3)



Further, b̄, υ and ḡ are the spatial body forces, the displacement vector and the deformed metric de-
terminant |ḡ|, respectively. The symmetry of the Cauchy stress tensor is usually proven by the angular
momentum balance, which is now disrupted by the body moment em̄. From the angular momentum
conservation it follows that the skew-symmetric part of the stress tensor equals

skew (σ) = −skew
(

p̄ ⊗ Ē
)

. (4)

Two additional field equations have to be considered. Namely, Gauss’ law and the heat energy equation

∇̄ · D̄ = 0, Q̇ =
(

ρ̄ h̄ − ∇̄ · h̄
)

dV̄ and D̄ = ε0Ē + p̄, (5)

where D̄, Q̇, h̄ and h̄ denote dielectric displacement, the heat energy rate, the inner heat source and the
heat flux, respectively.
The mechanical and electrical work rates are formulated as

mẆ = σT :
(

ḞF−1

)

dV̄ +
(

∇̄σ + ρ̄
(

b̄ − ϋ
))

· υ̇ dV̄ and eẆ =
(

ef̄ · υ̇ + ρ̄ Ē · ˙̄π
)

dV̄ ,

(6)
which, under consideration of (2), sum up to

Ẇ =
(

σT :
(

ḞF−1

)

+ ρ̄ Ē · ˙̄π
)

dV̄ , where p̄ = ρ̄ π̄. (7)

After introducing a quadratic Gibbs free energy functional and performing the Coleman-Noll analysis,
taking into account the Meixner inequality, the following constitutive laws evolve

Srs =
1

2

( � rsij +
� ijrs

)

Eij − � irsEi − Brs
(

T̄ − T
)

− pr Ek ḡks

Dk =
1

2

(

Dik + Dki + 2|F |εo ḡki
)

Ei + � kijEij + λk
(

T̄ − T
)

(8)

s = cE,E ln
T̄

T
+

1

ρ
BijEij +

1

ρ
λiEi and hi = LijT̄,j,

where S denotes the second Piola-Kirchhoff stress tensor.

Multiplying (2) scalar with δυ, (5)1 and (5)2 with δϕ and δT̄ , where ϕ denotes the electric potential,
and integrating the results over the deformed volume, assuming no entropy production, and applying
Gauss’ divergence theorem, ultimately leads to the following weak formulations
∫

V

(

FSF T)

:
(

δFF−1
)

dV −
∫

V

(

(p · ∇)
(

F−T
E

)

+ ρ (b − ϋ)
)

·δυdV −
∫

∂V̄

(σδυ)·n̄dĀ = 0 (9)

∫

V

D · δEdV −
∫

∂V

n · DδϕdA = 0 (10)

∫

V

(

h ·
(

∇δT̄
)

−
(

T̄ ṡ − ρh
)

δT̄
)

dV −
∫

∂V

n · hδT̄ dA = 0, (11)

where n̄ and n denote the surface normal vector in the deformed and the initial configuration, respec-
tively, and Ē = −∇̄ϕ.
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