
8th. World Congress on Computational Mechanics (WCCM8)
5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008)

June 30 –July 5, 2008
Venice, Italy

A SECOND ORDER METHOD FOR THE RESOLUTION OF THE
SHALLOW WATER EQUATIONS WITH TURBULENT TERM

* J. Fe1, L. Cueto-Felgueroso2 and F. Navarrina3

1 Grupo de Métodos
Numéricos en Ingenierı́a,
Universidad de A Coruña,
Campus de Elviña, 15071,
A Coruña, Spain.
jfe@udc.es
http://caminos.udc.es/gmni

2 Aerospace Computational
Design Laboratory,
Massachusetts Institute
of Technology,
77 Massachusetts Ave, Cam-
bridge, MA 02139 USA
lcueto@mit.edu

3 Grupo de Métodos
Numéricos en Ingenierı́a,
Universidad de A Coruña,
Campus de Elviña, 15071,
A Coruña, Spain.
fnavarrina@udc.es
http://caminos.udc.es/gmni

Key Words: Finite volumes, upwind, numerical viscosity reduction, turbulence, gradient mean values.

ABSTRACT

The behaviour of a fluid in 3D may be described by the Navier-Stokes equations which are a hy-
perbolic system of non linear conservation laws. Their complexity has led to the development of the
two-dimensional shallow water equations (2D-SWE) based on some simplifying hypothesis, the most
important of which is the hydrostatic pressure distribution [1]. This set of equations describes remark-
ably well the fluid behavior when the ratio of the depth to the horizontal dimensions is small and the
magnitude of the vertical velocity component is much smaller than the magnitude of the horizontal
velocity components at the space and time scales of interest for the resolution of a given problem. This
situation can be found, for instance, in the flow in channels and rivers or tidal flows.

2D-SWE take into account the effects of turbulence both through the frictional terms and the diffusion-
like term, that involves second derivatives. Frictional terms quantify the turbulence effects in the verti-
cal, while the second derivatives term quantifies the turbulent losses produced by the horizontal mixing
of momentum. This last term may not be significant in many practical problems when we only need an
estimate of energy losses and 2D-SWE are frequently used without considering the second derivatives
term, what is a reasonable simplification in many cases but not always. Thus, in the simulation of flows
in which recirculation zones play a significant role, the inclusion of this turbulent term may become
very important.

The 2D study of viscous fluids with Reynolds numbers below 10.000 can be very accurately solved by
the utilization of constant values for the viscosity in the turbulent term [2], but in most cases of practical
interest it is neccesary to calculate the turbulent viscosity at every point and a turbulence model is
therefore needed. The depth-averaged k − ε model has been used to obtain the turbulent viscosity by
many researchers [3] and it has been chosed for our work.

To discretize the equations, the finite volume method has been used. An important point when working
with this method is to properly calculate the numerical flux of the convective term at the cell edges. The



upwinding of the flux term has proved to be a useful technique [4] with the drawback of producing a
certain amount of numerical viscosity (or diffusion), which in some cases may be of similar magnitude
to the turbulent viscosity. In order to reduce the numerical diffusion the use of an upwinding coefficient
in a first order scheme has been described in an earlier work and it gives reasonably accurate results
[5]. However, this method reduces also the stability of the numerical process. For this reason a second
order method has been developped, which makes use of the mean gradient of the variables in a cell.
This mean gradient is calculated from the values at the cell edges, which depend on the values of the
variables at the adjacent cells. Thus the considered cell and the ones that surround it are involved.

In order to compare the first and second order methods, the Cavity Flow problem has been used. Calcu-
lations have been made for three viscosity values, corresponding to Reynolds numbers of 100, 1000 and
10000. The computational mesh is regular with 81 x 81 nodes. In Figure 1 we represent the resulting
streamlines obtained by using the second order method.

X

Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Cavity Flow. Streamlines for different viscosity and Reynolds number values. From left to
right: a) ν = 0.01 (Re = 100), b) ν = 0.001 (Re = 1000), c) ν = 0.0001 (Re = 10000).

In the present work: 1) we describe the proposed second order method to discretize the hydrodynamic
equations; 2) we compare the first and second order hydrodynamic models, in the Cavity Flow problem,
for uniform values of the viscosity and we show the better results obtained with the second order model;
3) we combine the second order hydrodynamic model with the first order k − ε model, comparing the
obtained results with experimental measures.
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