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ABSTRACT

In the paper the considerations concerning the mathematical micro/macro model of pure metals so-
lidification are presented. In particular the generalized approach close to the Mehl-Johnson-Avrami-
Kolmogoroff theory (e.g. [1]) is applied. On a stage of numerical simulation the course of nucleation
and nuclei growth are simulated according to the procedure described in [2]. Obtained in this way the
local capacities of internal heat sources are taken into account in numerical solution of macro problem
described by the Fourier-type equation.

The heat transfer processes proceeding in the solidifying casting volume (only heat conduction is taken
into account) are described by the following energy equation [2]

c(T )
∂T (x, t)

∂t
= ∇ [λ(T )∇T (x, t)] + L

∂fS(x, t)
∂t

(1)

where c(T ) is a volumetric specific heat, λ(T ) is a thermal conductivity, L is a volumetric latent heat,
fS is a volumetric solid state fraction at the point considered, T , x, t denote the temperature, spatial co-
ordinates and time. The equation (1) is supplemented by the adequate boundary and initial conditions
(more complex models of take also into account the thermal processes proceeding in the mould sub-
domain).

The micro/macro models of solidification discussed below require the introduction of the function being
the product of nuclei density N [nuclei/m3] and single grain volume V [m3], namely [1]

ω(x, t) =
4
3
πνN(x, t)

 t∫
0

u(τ)dτ

3

(2)

where u = ∂R/∂t is a crystallization rate (R is a grain radius), ν is a coefficient equals 1 in case of
spherical grains or ν < 1 (e.g. dendritic growth).

The function fS appearing in equation (1) can be described in the following way [3]

dfS(ω)
[1− fS(ω)]n

= dω (3)



For n = 0 and n = 1 the solutions of (3) fulfilling the condition ω = 0: fS = 0 leads to the well known
linear and exponential models, correspondingly, but the others solutions (e.g. n = 2) can be also taken
into account. These generalized models can be called the power-type ones and they can be useful for
description of crystallization process and modelling of source term in equation (1).

We assume that the ’driving force’ of crystallization is an undercooling below the solidification point
T ∗ (a pure metal solidification is considered). In particular

N(x, t) = Ψ∆T 2(x, t) (4)

where Ψ is a nucleation coefficient, ∆T - undercooling below a solidification point) is taken into ac-
count. It was assumed that the nucleation stops at maximum undercooling. The nuclei growth is deter-
mined by the following formula

u(x, t) =
dR(x, t)

dt
= µ1∆T 2(x, t) + µ2∆T 3(x, t) (5)

where R is a grain radius and µ1, µ2 - growth coefficients.

Let us consider the control volume ∆Vi from an interior of the casting area. During a certain interval
of time the temperature at central point of ∆Vi decreases below the solidification point and the crystal-
lization process starts. We find the number of the first ’portion’ of nuclei N1

i (using equation (4)) and
the final radius of grains ∆R1

i (formula (5)). Next we determine the fraction fS for control volume con-
sidered. In the next loop of computations we find N2

i and ∆R2
i and new local value of fS remembering

that the first grains generation N1
i has the radius ∆R1

i + ∆R2
i , while the second generation N1

i −N2
i

has the radius ∆R2
i . The similar procedure is continued during the next loops of computations. In this

way we can to observe the growth of successive families of grains and to predict the primary structure
of casting.

As an example the solution obtained for aluminium plate

Figure 1: Cooling curves

(G/2=0.01m) produced in typical sand mould will be shown.
The input data concerning the materials can be found in liter-
ature. In Figure 1 the cooling curves at the axis close to the
plate boundary are shown (on the stage of computations the
FDM has been used). They correspond to parameters n = 1
(Kolmogoroff model) and n = 2 (power-type model). Then

n = 2 : fS = 1− 1
ω + 1

(6)

The differences between the results obtained are not big, but
visible. The optimal choice of n requires the experimental
researches.
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