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ABSTRACT

In this paper, a new scaled boundary finite element for arbitrary laminated plates is presented. The
scaled boundary finite element method [1] is a finite element formulation employing a discrete form
of theKANTOROVICH reduction approach formulated in scaled boundary coordinates. If the system of
ordinary differential equations for the unknown functions is solved in a closed-form analytical manner,
this efficient approach yields a field expansion in scaling direction [2, 3]. Although the method has been
applied successfully to many problems of continuum mechanics, its application to plate bending prob-
lems is, apart from an initial approach to the dynamics of thin isotropic plates [4], rather unexploited.
This study provides a new extension of the method to the static analysis of arbitrary laminated plates.

Utilising first order shear deformation theory, the virtual work balance for a laminated plate domainΩ
with the boundaryΓ in the absence of volume loads is given by the equation∫

Ω

[
(LLLδu)T DALLLu + (LLLδu)T DBLLLφφφ + (LLLδφφφ)T DBLLLu + (LLLδφφφ)T DDLLLφφφ

+ (∇∇∇δw + δφφφ)T DS (∇∇∇w + φφφ)
]
dΩ

=
∫

Γ1

δunN̄ndΓ +
∫

Γ2

δutN̄tdΓ +
∫

Γ3

δφnM̄ndΓ +
∫

Γ4

δφtM̄ntdΓ +
∫

Γ5

δwS̄ndΓ ,

(1)

with in-plane displacementsu, out-of-plane displacementsw and rotationsφφφ as kinematical variables
and differential operatorsLLL and∇∇∇. The material matrices are denoted byD while the symbols with
overbars denote boundary traction resultants in normal and tangential directions. For thin plates with
suppressed shear deformations, theK IRCHHOFFkinematical assumption (∇∇∇w + φφφ = 0) holds.

A scaled boundary coordinate system (see Figure 1) with dimensionlessξ-η-coordinates (ξi ≤ ξ ≤ ξe,
0 ≤ η ≤ 1) is introduced and the domain is mapped to the discretised boundary (ξ = 1)
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Figure 1: Scaled boundary discretisation.



using the transformation
x = x0 + ξN̂(η)xs , (2)

with similarity centreS(x0, y0) and geometry shape functionŝN(η). If a mapping of the total domain
is not possible, appropriate subdomains need to be introduced. For the differential operators, an additive
decomposition of the form

LLL = B̂1(η)
∂

∂ξ
+

1
ξ
B̂2(η)

∂

∂η
, ∇∇∇ = B̂3(η)

∂

∂ξ
+

1
ξ
B̂4(η)

∂

∂η
, (3)

is used, where the matriceŝB(η) contain components of the inverse Jacobian matrix evaluated at the
discretised boundary. The displacement fields are approximated in separable product form by

u(ξ, η) = Nu(η)uh(ξ) , w(ξ, η) = Nw(η)wh(ξ) , (4)

with displacement shape functionsN(η) and unknown functionsuh(ξ) andwh(ξ).

In order to derive the governing equations for a laminated thin plate element, the virtual work equa-
tion (1) is transformed to the scaled boundary discretisation using the relations derived above. The
factors depending onη yield the boundary stiffness matrices by integration along the boundary. Inte-
grating by parts twice yields a system of ordinary differential equations

[
0 ẼA0 ẼA1 ẼA2

ẼB4 ẼB5 ẼB6 ẼB7

]



ξ4uh,ξξξ

ξ3uh,ξξ

ξ2uh,ξ

ξuh


 +

[
0 ẼB0 ẼB1 ẼB2 ẼB3

ẼD0 ẼD1 ẼD2 ẼD3 ẼD4

]



ξ4wh,ξξξξ

ξ3wh,ξξξ

ξ2wh,ξξ

ξwh,ξ

wh




= 0 ,

(5)

and a set of algebraic equations for the dynamic boundary conditions. The constant matricesẼ depend
on the boundary stiffness matrices only. This homogeneous Euler-type system has a general solution of
the form

uh = c1λ1ξ
λ1−1ψψψu1 + c2λ2ξ

λ2−1ψψψu2 + · · ·+ cnλnξλn−1ψψψun , (6)

wh = c1ξ
λ1ψψψw1 + c2ξ

λ2ψψψw2 + · · ·+ cnξλnψψψwn , (7)

including power-logarithmic terms and terms due to conjugate-complex pairs of exponents. The modal
vectorsψψψ and the exponentsλ are determined by solution of the corresponding eigenvalue problem.
At the boundary, the nodal kinematic degrees of freedom are enforced to calculate the constantsci.
The stiffness matrix is obtained by introduction of this special solution into the algebraic equations for
the dynamic boundary conditions. Using appropriate solution subsets, bounded as well as unbounded
domains can be treated. As will be demonstrated by numerical examples, this new and efficient scaled
boundary element for laminated plates is especially well suited for stress concentration problems.
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