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ABSTRACT

We study a mixed-integer formulation of the minimum compliance problem for structural topology
design ([2]) from both the theoretical and numerical points of view. Previously, it has been numeri-
cally indicated that the original discrete formulation of the minimum compliance problem cannot be
efficiently solved when the number of design variables becomes large ([1]). Here we propose to solve
this class of problems by using two different, but similar, decomposition techniques for mixed-integer
optimization. The methods solve this kind of problems to global optimum and allow us toconsiderably
increase the number of design variables. These techniques have not been used before in the area of
structural topology optimization.

The discrete design problem is set in a format based on a finite element discretization of the continuum
problem. Now, if we haven discrete design variables, it follows that the vector of design variables is
expressed asx ∈ {0, 1}n. This notation describes the material distribution on the design space. The
state variableu ∈ R

d represents the displacement of the structure for itsd degrees of freedom, when
the structure is under a single load conditionf ∈ R

d, and suitable support conditions.K(x) ∈ R
d×d

denotes the global stiffness matrix. Then the discrete formulation of the minimum compliance problem
constrained to a certain capacity (weight or volume) of materialV is given by

min
x∈Rn,u∈Rd

fT u

s.t. K(x)u = f
n∑

j=1

xj ≤ V

xj ∈ {0, 1} j = 1, ..., n.

(1)

whereK(x)u = f is the state equilibrium equation for the structure under the loadf . This kind of
problems belongs to the class of mixed integer non convex problems.



The decomposition techniques we consider are, the Generalized BendersDecomposition in its extended
version ([4]), and the Outer Approximation method ([3]). These techniques are based on the fact that
the non-linear mixed-integer program (1) can be replaced by the decomposed set of programs

z = min
x∈{0,1}n

{v(x) s.t.
n∑

i=1

xi ≤ V } (2)

wherev(x) is defined by the linear program

v(x) = inf
u∈Rd

{fT u s.t. K(x)u = f}. (3)

The first program is called ”the master problem”, and the second problem iscalled ”the subproblem”.
The subproblem (3) corresponds to a displacement analysis of the given structure described byx. This
decomposed representation is based on the projection theory for general non-linear optimization pro-
grams. The two decomposition techniques are mainly based on finding, each one in a different way,
two sequences of optimization programs, that approximate the system (2) - (3). The approximation is
understood in the sense that it produces convenient bounds for the original program (1). In practice,
the subproblem (3) does not include integer variables, therefore it is tractable to solve numerically,
and when it is solved, it gives an upper bound for the global optimum. Hence, it does not need to be
replaced, or approximated by another program. On the other hand, the program (2) is an unknown (be-
causev(x) is implicitly defined), non-linear integer problem, so it is necessary to find a convenient
sequence of linear integer approximations, called relaxed master problems.As a linear integer problem,
a relaxed master problem can be solved with any method for linear integer optimization, as for example,
the branch and cut method. The problems produce a sequence of lower bounds for the optimum solu-
tion of (1). Therefore, this system of relaxed master problem - subproblem, forms a sequence of lower
and upper bounds for the global optimum of the original problem (1). In any stage of the algorithm
where the relaxed master problem is solved, a new linear constraint is introduced to the program, which
guaranties that the sequence of optimal solutions for the relaxed master problems forms an increasing
monotone sequence. As a consequence, the algorithm forms a monotone sequence of lower and upper
bounds of the global optimum, which can be proven to converge in a finite number of iterations to the
global optimum of the program (1).

The theory for the convergence of these two techniques exists since the end of the 80’s, and it is valid for
a general set of optimization problems. Nevertheless, no numerical tests have been done on structural
or topology optimization problems, until now. Both methods are investigated by computational means,
using the standard finite element method to solve the projected subproblem, andthe so-called branch
and cut method for the linear integer master problem. Theoretical results of both techniques applied
to the single load minimum compliance problem will be presented, as well as the numerical results.
We will also present a comparison of the two techniques on benchmark examples of the structural
optimization field. Finally, we will present, the future work that the results of thiswork suggest.
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