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ABSTRACT 

Since the fundamental work by Bendsøe and Kikuchi [3], topology optimization has 
been based on compliance type formulations [4] while the number of works considering 
stress constraints are rather limited [6]. More recently the recent field of generalized 
shape optimization using level set methods (see for instance [1,2]) has followed the 
tracks of topology optimization and has mainly been focusing on compliance 
minimization problems. Recently the latter work [11] showed that it is also possible to 
solve also the strength problem using a level set description of the geometry and an X-
FEM solution for tackling non conforming meshes to the moving boundaries.  

The ‘compliance type’ formulation has produced quite interesting results in many 
problems because controlling the energy and the displacements under the loads is 
generally good for deflection control and because, for one load case, the compliance 
minimization leads to a fully stressed design nearly everywhere in the structure. 
However there are theoretical results that clearly show that the strongest and the stiffest 
structural layout can be quite different. As demonstrated in Ref. [8] truss topology 
optimization can lead to different results when there are several load cases, different 
stress limits in tension and compression, or when there are several materials involved.  

Therefore, the first goal of the paper points out the importance of considering stress 
constraints as soon as the preliminary design phase, that is, to include stress constraints 
in the topology optimization problem. Revisiting some contributions of the authors, this 
paper aims at illustrating the key role of stress constraints in the framework of topology 
optimization of continuum structures. The recent developments are able to treat: 

• Integrated stress criteria (i.e. global) relaxed stress constraints that aggregate the 
stress constraints in each finite element in order to be able to circumvent the large scale 
character of the local stress constraints.  

• Stress criteria that are able to tackle non equal stress limits in tension and 
compression. The usual von Mises criterion is unable to predict real-life designs when 
the structure is made of materials with unequal stress limits like concrete or composite 
materials. These different behaviours in tension and compression result in quite specific 
designs. 



 

Numerical applications make possible to point out the different nature of structural lay 
out for maximum strength and maximum stiffness. This one is clearly demonstrated in 
two kinds of particular situations: once several load cases are considered and when 
unequal stress limits in tension and compression are involved. 

The second contribution of the paper deals with the solution aspects of large scale 
constrained optimization problems. Because of the huge number of design variables, 
dual methods combined with local convex approximations such as CONLIN [7] or 
MMA [10] are well indicated to solve classical topology optimization methods. 
However stress constrained problems introduce also a so large number of active 
constraints that one comes to a rather delicate situation. We show that the optimizer 
effort increases mostly as the cube of the number of constraints. In order to circumvent 
the problem, the idea developed in the paper is to combine first or second order 
approximations [5] with zero order approximations of stress constraints, especially for 
the subset of restrictions that are likely not to be active or not to change too fast. At first 
the paper presents the way to derive zero-order approximations of ε-relaxed stress 
constraints (that is necessary to cope with the singularity phenomenon of stress 
constraints in topology optimization). Then the proposed hybrid approach mixing 
approximation of different orders is benchmarked on numerical applications illustrating 
the reduction of computation time for solving optimization problems without sacrifying 
to the robustness and efficiency.  
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