
8th. World Congress on Computational Mechanics (WCCM8)
5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008)

June 30 –July 5, 2008
Venice, Italy

TOWARD HIGHER PERFORMANCE FEM IMPLEMENTATIONS
USING LAZY EVALUATION AND SYMBOLIC PROGRAMMING.

Hugo Leclerc1

1 LMT-Cachan
(ENS Cachan/CNRS UMR8535/Universite Paris 6/PRES UniverSud Paris)
61, av. du President Wilson, F-94230 Cachan, France
leclerc@lmt.ens-cachan.fr

Key Words: Finite Element Method, Symbolic programming, Code generation, Active Libraries, Par-
allel programming.

ABSTRACT

Efficient use of processor abilities, memory hierarchies and distributed ressources to solve even the
most basic equations has always been a difficult task. It has led to the idea that high-performance
computing means simplifications, specialization and hand-coding. But this idea is challenged by recent
work in the domain of “Active Libraries” [1] where implicit or explicit code generation allows the
developers to concentrate on mathematical properties and clever optimizations, not on the repetitive but
time consuming tasks.

This paper is about consequences on using both lazy evaluation and symbolic programming as a com-
puting model, to improve the performance of Finite Element Method implementations.

Lazy evaluation basically consists in postponing as long as possible the necessary execution of the
developer’s instructions in order to collect in global graph form the dependencies and memory re-
quirements of all the sub-steps – including the pre and post-processing ones. At first sight, It gives
a convenient way to benefit from researches on static or pseudo-dynamic scheduling and memory
management [2], allowing efficient out of core algorithms, management of CPU and memory hetero-
geneities...

But this graph can also be considered as a symbolic representation of a program. It allows automatic
integration, differentiation or substitution, giving ways to automate usual transformations for methods
like Newton-Raphson, Galerkin, Newmark, ... in a similar way as what is done in [3].

In the first part, this paper shows examples of some local optimizations that can be achieved using both
lazy evaluation and symbolic programming, especially for memory and time consuming sub-steps.
When possible, timings are compared to those of hand-coded versions, and state of the art libraries. As
example, it is shown how cache management and automatic parallelization can benefit from symbolic
information on fields and values.

Overall performance is finally discussed starting from some propositions to improve the basic meth-
ods, based each time on the automatic symbolic transformations which have been made accessible with
this paradigm.



REFERENCES

[1] Todd L. Veldhuizen and Dennis Gannon. “Active Libraries: Rethinking the roles of
compilers and libraries”. Proceedings of the SIAM Workshop on Object Oriented
Methods for Inter-operable Scientific and Engineering Computing (OO’98), Vol. 10,
http://ubiety.uwaterloo.ca/˜tveldhui/papers/oo98.ps, 1998.

[2] Oliver Sinnen. “Task Scheduling for Parallel Systems”. Wiley-Interscience, 2007.
[3] Anders Logg. “Automating the Finite Element Method”. Arch. Comput. Methods Eng, Vol.

14, Nb. 2, P. 93–138, 2007.


