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Reduced basis and iterative algorithms for non-linear elastic thin shells.
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ABSTRACT

In this work, we propose an iterative linear solver for the linearized equations coming from the Newton-
Raphson method. In structural mechanics, the computation of the non-linearsolution, with a Newton-
Raphson method for example, requires the solution of sparse linear systemsof equations:

KiU i = F (U j) with i = 1, .., k andj = 1, .., i − 1 (1)

with Ki designs aN × N symmetric matrix (the tangent matrix),U i is the unknown displacement
vector (U i

∈ IRN ) and F (U j) is a load vector which depends on the previous solutionsU j with
j = 1, .., i − 1. In this work, problems (1) result from the discretization with the finite elementmethod
of the non-linear elastic thin shell equations. In moderate scale problems (less than 20 000 unknowns),
problems (1) are solved by using direct triangulation, such as the Crout method for the considered
problem. When the problem size increases, iterative methods are generallyused. For the symmetric
problem (1) the most useful method is the conjugate gradient method connected to preconditioning
techniques. Whereas direct methods provide, after a knonwn number ofoperations, the exact solution
of the initial problem (1), iterative methods generate a sequence of approximate vectors which converge
to the desired solution. Generally, the choice between direct and iterative methods is made according
to the size of the discretized problems. Nevertheless, within non-linear computations the choice of the
solver is not as easy. Indeed, if the matrixKi is constant during all the iterations i (within the Newton
modified method or with an Asymptotic Numerical Method [1]), a decomposition of this matrix is
carried out once and following problems need only backward and forward substitutions. So, the most
computing time step is realized for the first problem and the following have low computing costs.
With iterative methods, all the problemsi need the same computing time and the total computational
cost can be high. Nevertheless, as iterative methods require only product matrix-vector, the amount of
stored data is generally less than with a direct method. In this work, we propose an iterative method to



Step Number of iteration of the Newton’s corrector PM (n) PCG PCG IC[0] PCG IC[1]
4 2 6 (15) 11 170 110
5 2 6 (17) 11 176 111
6 3 7 (21) 12 178 113
7 3 8 (25) 17 184 121
8 3 9 (29) 20 193 124
9 3 10 (33) 21 198 130
10 3 9 (37) 21 198 135

Table 1: Comparison of the average number of iterations to get the desired accuracy (η = 10−4) on the
linear problem (1) for the Proposed Method (PM) and the PreconditionedConjugate Gradient method
(PCG).(•) is the number of vectors of the reduced basis. IC[•] refers to the level of the incomplete Crout
triangulation. 10 steps are necessary to get the non-linear response curves. The demanded accuracy on
the non linear problem is10−3.

solve linear systems (1) where the matrixKi is not identical for all the iterationsi and have different
right-hand side vectorsF (U j). The key point of this method is to associate a direct and an iterative
method. The direct method is used to solve a reduced size problem. The vectors used to build this
reduced problem are issued from the previous solutionsU j with (1, .., i − 1). The second important
point is to use within the iterative method a preconditioning matrix which is a matrix triangulated at a
previous step. Usually, preconditioning techniques do not use full matrices but incomplete factorization.
As complete triangulation requires consequent CPU time, the obtained preconditioning matrix is used
for solving several linear problems (1), either for several Newton’s iterations or for several steps of the
prediction-correction scheme (Newton-Raphson method). Finally, as the convergence of the proposed
iterative method can be slow (sometimes it can be divergent) a convergenceaccelerating technique is
used[2].

To show the efficiency of the proposed iterative linear solver we applied itto the a classical geometri-
cally nonlinear problem : a cylindrical shell with two diametrically opposed rectangular cut-outs. The
number of unknowns for this example is equal to 5190. In table (1), we compare the average number of
iterations to get the demanded accuracy on the linear problem (1) for 4 iterative methods : the proposed
method (PM), the preconditioned conjugate gradient method with the same preconditionning matrix
that the proposed method (PCG), the PCG with an incomplete Crout triangulationas preconditionning
(PCG IC[*] with ’*’ means the number of terms computed for the incomplete factorization). One can
see in table (1) that the use of the prediction matrix as a preconditioning technique is the correction
phase is very efficient. Indeed when using a classical preconditioning method, such as IC[*], the num-
ber of iterations to get the demanded accuracy is roughly equal to 200 with IC[0] and 100 with IC[1].
Whereas with the prediction matrix as preconditioner, the PCG needs for all the linear problems solved
less than 30 iterations. The results presented in table (1) show that the numberof iterations is approx-
imately twice as less with the proposed method than with the PCG (with the same preconditioning
method).
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