TOPOLOGICAL DERIVATIVE IN STEADY-STATE ORTHOTROPIC HEAT DIFFUSION PROBLEM

S.M. Giusti¹ and *A.A. Novotny²

¹ National Laboratory for	² National Laboratory for
Scientific Computing.	Scientific Computing.
Av. Getúlio Vargas 333,	Av. Getúlio Vargas 333,
Room 1A-39, 25651-075	Room 2A-49, 25651-075
Petrópolis - RJ, Brazil.	Petrópolis - RJ, Brazil.
giusti@lncc.br,	novotny@lncc.br,
www.lncc.br/~giusti	www.lncc.br/~novotny

Key Words: Steady-state orthotropic heat diffusion, Topological derivative, Sensitivity analysis.

ABSTRACT

The topological derivative (Sokolowski and Zochowski, 1999; Céa *et al.*, 2000) allows us to quantify the sensitivity of the problem when the domain under consideration Ω is perturbed by introducing a hole, an inclusion or a source term in a small region $\mathcal{H}_{\varepsilon}$ of size ε with center at an arbitrary point $\hat{\mathbf{x}} \in \Omega$. Therefore, this derivative can be seen as a first order correction on a given shape functional $\psi(\Omega)$ to estimate $\psi(\Omega_{\varepsilon})$, where Ω_{ε} is the perturbed domain. Thus, we have the following topological asymptotic expansion of ψ ,

$$\psi(\Omega_{\varepsilon}) = \psi(\Omega) + f(\varepsilon)D_T(\widehat{\mathbf{x}}) + \mathcal{R}(f(\varepsilon)) , \qquad (1)$$

where $f(\varepsilon)$ is a positive function that decreases monotonically such that $f(\varepsilon) \to 0$ when $\varepsilon \to 0^+$, $\mathcal{R}(f(\varepsilon))$ contains all terms of higher order in $f(\varepsilon)$ and the term $D_T(\hat{\mathbf{x}})$ is defined as the topological derivative of first order of $\psi(\Omega)$.

In the work of Sokolowski and Zochowski, 1999 (eq. 2.1 – problem $\mathcal{P}(\Omega_{\rho})$), the topological sensitivity associated to the nucleation of a hole in an orthopic matrix was calculated. In order to simplify the analysis, the domain was perturbed considering an ellipse oriented in the directions of the orthotropy and with semi-axis proportinal to the material properties coefficients in each orthogonal direction. In this paper, we extend the above result considering as perturbation a circular hole with free boundary condition instead of an ellipse. More specifically, the shape functional is given by the total potential energy associated to the steady-state orthotropic heat diffusion problem, i.e.,

$$\psi(\Omega_{\varepsilon}) = \int_{\Omega_{\varepsilon}} \mathbf{K} \nabla u_{\varepsilon} \cdot \nabla u_{\varepsilon} + \int_{\Gamma_N} \bar{q} u_{\varepsilon} .$$
⁽²⁾

with u_{ε} solution of the following variational problem: find the temperature field $u_{\varepsilon} \in \mathcal{U}(\Omega_{\varepsilon})$ such that

$$\int_{\Omega_{\varepsilon}} \mathbf{K} \nabla u_{\varepsilon} \cdot \nabla \eta_{\varepsilon} + \int_{\Gamma_N} \bar{q} \eta_{\varepsilon} = 0 \qquad \forall \eta_{\varepsilon} \in \mathcal{V}(\Omega_{\varepsilon}),$$
(3)

where $\mathcal{U}(\Omega_{\varepsilon})$ is the admissible functions set and $\mathcal{V}(\Omega_{\varepsilon})$ is the admissible variations space, that are defined as

$$\mathcal{U}(\Omega_{\varepsilon}) = \{ u_{\varepsilon} \in H^{1}(\Omega_{\varepsilon}) : u_{\varepsilon}|_{\Gamma_{D}} = \bar{u} \}, \quad \mathcal{V}(\Omega_{\varepsilon}) = \{ \eta_{\varepsilon} \in H^{1}(\Omega_{\varepsilon}) : \eta_{\varepsilon}|_{\Gamma_{D}} = 0 \}, \tag{4}$$

being Γ_D and Γ_N the Dirichlet and Neumann boundaries, such that $\partial \Omega = \Gamma_D \cup \Gamma_N$, with $\Gamma_D \cap \Gamma_N = \emptyset$; \bar{u} and \bar{q} are the temperature and heat flux prescribed on Γ_D and Γ_N , respectively; finally, **K** is the orthotropic thermal conductivity tensor.

Using the topological shape-sensitivity method proposed by Novotny et al., 2003, and the polarization tensor (Pólya and Szegö, 1951) to obtain the asymptotic expansion for u_{ε} ; we obtain the following structure for the topological derivative, taking $f(\varepsilon) = \pi \varepsilon^2$,

$$D_T(\widehat{\mathbf{x}}) = -\mathbf{T}\nabla u(\widehat{\mathbf{x}}) \cdot \nabla u(\widehat{\mathbf{x}}) \qquad \forall \widehat{\mathbf{x}} \in \Omega ,$$
(5)

where $\mathbf{T} = \mathbf{T}(k_1, k_2)$ is a second order tensor that depends on the eigenvalues k_1 and k_2 of the conductivity tensor **K**.

Remark: For isotropic material, $k_1 = k_2 = k$ and $\mathbf{T} = k\mathbf{I}$. Thus, the above result degenerates to the classical one, that is

$$D_T(\widehat{\mathbf{x}}) = -k\nabla u(\widehat{\mathbf{x}}) \cdot \nabla u(\widehat{\mathbf{x}}) \qquad \forall \widehat{\mathbf{x}} \in \Omega .$$
(6)

REFERENCES

- J. Céa, S. Garreau, Ph. Guillaume & M. Masmoudi. "The shape and Topological Optimizations Connection". *Computer Methods in Applied Mechanics and Engineering*, Vol. 188, 713–726, 2000.
- [2] A.A. Novotny, R.A. Feijóo, C. Padra & E. Taroco. "Topological Sensitivity Analysis". Computer Methods in Applied Mechanics and Engineering, Vol. 192, 803-829, 2003.
- [3] G. Pólya & G. Szegö. *Isoperimetric Inequalities in Mathematical Physics*, Annals of Mathematical Studies Number **27**, Princeton University Press, 1951.
- [4] J. Sokolowski & A. Zochowski. "On the Topological Derivatives in Shape Optmization". *SIAM Journal on Control and Optimization*, Vol. **37**, 1251-1272, 1999.