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ABSTRACT

The mechanisms of the direct shear of materials are complicated. Therefore, it is sometimes necessary to
estimate the macroscopic direct shear strength of materials as a practical problem. This paper suggests
a method of finite element analysis for the estimation of the shear strength of rock masses, which is
practically estimated through the use of typical in situ direct shear tests.

With the failure of rock masses, two kinds of failure should be considered. Firstly, the fractures of intact
rock materials, which compose the macroscopic progressive failure, should be examined. Secondly,
the sliding and the opening of the planes of weakness, which are distributed in rock masses from the
beginning, should be considered. In this paper, the first kind of failure is regarded as the fundamental
problem.

In the computation, the appearance of local cracks is firstly determined by comparing the stress values
for the constant strain triangles (CST) and the failure criterion of the materials by Hoek [1]:

σ1
′ = σ3

′ +
√

mσciσ3
′ + sσci

2

whereσ1
′ andσ3

′ are the effective major and minor principal stress values,σci is the compressive
strength of the intact material, ands andm are the parameters representing the degree of damage to the
macroscopic material.

As proposed by Bolzon[2], if local cracks appear, the applicable elements are to be replaced with
triangular elements, each of which has an embedded interface, in order to represent the discontinuities
of stress and the displacement across the cracks. The equilibrium of an elastic bodyΩ is stated in a
weak form as ∫

Ω′

(Cδu)T σdΩ −
∫
Ω′

δuTb̄dΩ −
∫

∂Ω′
t

δuTt̄dS +
∫
Γ

δwTtdΓ = 0
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Figure 1: Relationships between
shear displacement and shear
stress
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Figure 2: Crack propagations
in the experiment: (a) Just after
the peak and (b) In the residual
state

0.1 mm per step

2.5 MPa in the first step

80 mm

- Elastic modulus: 3,697 MPa

- Poisson’s ratio: 0.35

- Compressive strength: 16.56 MPa

- Tensile strength: -2.844 MPa

  (s=1, m=5.65)

- Crack surfaces are smooth

- 500 nodal points and

 911 CST elements

- Plane strain

Figure 3: Crack propagations ob-
tained from the computation: just
after the peak
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Figure 4: Stress diagram at the peak

where an interfaceΓ, dividing Ω into the portions
Ω+ and Ω−, is considered in the 2D domain.Γ+

andΓ− are the sides ofΓ relevant toΩ+ andΩ−

respectively. Body forcēb acts inΩ, while loadst̄
and displacement̄u are respectively assigned to the
boundaries∂Ωt and∂Ωu, respectively. The tractions
applied to the surfacesΓ+ andΓ− are respectively
denoted byt+ andt−, respectively, and the equilib-
rium requires thatt− = −t+ ≡ t. Displacement
field u, insideΩ, is conceived as the sum of the reg-
ular partũ and the possibly discontinuous partŵ. ŵ is described separately asw± in Ω±, and the
differencew ≡ w+ − w−. Vectorσ includes the components of the Cauchy stress tensor, andC rep-
resents the differential operator of linear compatibility.δu andδw represent the virtual displacement,
andΩ′ = Ω − Γ. The discretized version of of the above equation isKuu K+

uw K−
uw

K+
wu K+

ww 0
K−

wu 0 K−
ww
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whereU andW ˚ are the discritized versions of̃u andw±, andPu, P±

w andT are those of̄b and
t̄ for Ω′, b̄ and t̄ for Ω±, andt on Γ. All the K represent the stiffness constructed by dividing the
original CST,Ω, into a CST,Ω−, and a 4-node isoparametric quadrilateral,Ω+. In this examination,Γ
ran through the major principal axis at the failure of each element.

With this procedure, the model tests which simulate practical in-situ rock shear tests are analyzed. The
results obtained from the plaster model tests and the computations are shown in Figures 1 through 3.
From these results, the stress paths during the tests are obtained, and the mechanisms of the appearance
of the macroscopic strength values are interpreted with reference to the failure criterion of the materials,
as shown in Figure 4.
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