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Abstract

Convection-diffusion-dissipation equations can be upwinded by a discretiza-
tion of the total derivatives. Consider the solution u of ∂tu + a∇u = 0 in
Ω × (0, T ) with u0 as initial condition with a, u0 smooth and a · n = 0 on
the boundary.

um+1(x) = um(X(x)) with X(x) = x− a(x− a(x)
δt

2
)δt (1)

The scheme (1) is second order accurate. The difficulty then is to find
a second order finite element approximation. Many research papers deal
with this problem (see [5] and the references therein and more recently
[3] [1] [6]) . The usual approach is to write the scheme in weak form and
discretise by the finite element method. However all proofs require exact
quadrature for the term containing ūm+1 which in turn implies that the
finite element mesh and the convected mesh are intersected. Since this is
too costly we propose here an alternative based on an idea due to Yabe[7]
which has been shown very accurate numerically but which has not yet
been proven to work theoretically.

The simplest discretization in space is to appy the scheme at the center
of gravity qk

c of each triangle Tk: um+1
h (x) = um

h (X(qk
c )) ∀x ∈ Tk ∀k

Scheme (??) is O( h
δt +δt2) and best at δt = h1/3. To obtain a second order

scheme in space, we intend to convect the function u and its gradients
v(x, t) = ∇u(x, t). This leads to: vm+1(x) = ∇X(x)vm(X(x)) which is
second order accurate. Scheme (1) is discretized in space by a piecewise
discontinuous linear or quadratic approximation on a triangulation T :

um+1
h (x) = ∇X(qc)∇um

h (X(qc))(x− qc) + um
h (X(qc)) (2)

for all x ∈ T the triangles of the triangulation; qc denotes the center of T .
The method is L∞-stable and O(δt2 + hk+1

δt2 ), with k = 1, 2 the degree of
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the finite element approximation.

The rotating bell test case [5] has a = (x,−y)T and u0 = e−r|x−x0|2 . Here
the domain is truncated to the unit disk (the unit square when quadrilateral
elements are used) and r = 20, x0 = (0.35, 0.35)T . At t = 2π u = u0 so the
analytical solution is known.

IsoValue
-0.0789317
-0.014729
0.0494737
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IsoValue
0.0270912
0.0769788
0.126866
0.176754
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0.276529
0.326417
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0.47608
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0.725518
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0.825293
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Figure 1: Left pure convection: zoom of the solution uh computed with P1

discontinuous elements with a 5300 vertices and 50 time steps; there is no phase

error and the exact solution is at the same position as the computed one . Right

convection-diffusion: computed solution and exact (the perfect circles) solution;

here the L2 error is 0.009 after one turn.
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