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ABSTRACT

Synchronization has been extensively investigated for interacting dynamical systems [1,2]. In the sys-
tems, self-sustained oscillators synchronize in a common frequency by exchanging their stored energy
through coupling. This energy exchange is crucial for understanding the phenomena. However, the
energy aspects have hardly been used for analysis of the characteristics except in a few references
[3,4]. The purpose of this paper is to reveal the relationship between phase and energy exchange in
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Figure 1: Vibro-exciters on oscillatory base [4].

an entrained mechanical system. That is, an anal-
ysis of mutual entrainment is discussed in vibro-
exciters on oscillatory base through energy ex-
change.

Figure 1 shows the schematic configuration of
two identical vibro-exciters on an oscillatory
rigid base. This model is proposed by Blekhman
[4]. The vibro-exciters are driven by external
torque and rotate in clockwise direction. The
rigid base is constrained to move in one dimen-
sion and is connected with an immovable foun-
dation through elastic and damping elements. In
the figure, φi (i = 1, 2) represents the angular displacement of vibro-exciter i, and x stands for the
linear displacement of rigid base. A dimensionless form for the governing equations of motion is given
by











φ̇i = ωi, ω̇i = −kωi − sinφi + Ti + εẏ cosφi,

ẋ = y, ẏ = −βy − γx+
2

∑

i=1

(

ω̇i cosφi − ω2
i sinφi

)

,
(1)

where k denotes the damping coefficient for vibro-exciters, β the damping coefficient for rigid base,
γ the elastic coefficient for rigid base, and Ti the external torque rotating vibro-exciter i. The overdot
denotes the time differentiation. The parameter ε varies the coupling strength between vibro-exciters
and rigid base. The parameters are set at k = 0.3, β = 0.5, γ = 1.0, and T1 = 1.5.
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Figure 2: Energy flow in system.

Figure 2 shows the energy flow in the system.
In the figure, the system can be decomposed
into several components. In particular, the com-
ponents represent three subsystems symbolized
by Σ , external sources E, and dissipation ele-
ments D. Σ1 (or Σ2) corresponds to the vibro-
exciter 1 (or 2) and ΣX the rigid base. W de-
notes the exchanged energy among Σ , E, and D.
Under harmonic entrained states, the following
equality holds as an energy balance relation with
Σi (i = 1, 2):

0 = WE→i −Wi→D −Wi→X . (2)

In the right-hand side, the first term WE→i stands for the energy supplied to Σi by external torque.
The second term Wi→E represents the dissipated energy with damping coefficient. The last term Wi→X

corresponds to the energy exchanged between Σi and ΣX . When WX→i > 0, ΣX does positive work
to Σi. For ΣX , an equality similar to (2) is also derived.

Figure 3(a) shows response curves for phase difference θ21 (, φ2 − φ1), and (b) shows relationship
between θ21 and exchanged energy W2→1 (, −WX→1). In Fig. 3, solid lines denote the response
curves for stable solutions, and broken lines for unstable solutions. Figure 3(a) shows that the two
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Figure 3: (a) Response curves for phase difference θ21, (b) relationship between phase difference θ21

and exchanged energy W2→1.

vibro-exciters synchronize in an anti-phase, and that the phase difference is a function of the external
torque T2. In Fig. 3(b), the energy has positive value when the phase difference becomes negative for
stable solutions. This feature implies that if vibro-exciter 1 leads 2 with respect to phase, Σ2 supplies
energy to Σ1 under harmonic entrained states. In addition, the energy exchange between vibro-exciters
is a function of their phase difference. Consideration of the energy exchange possibly allows us to derive
a phase equation for the mutual entrainment. The detail will be discussed in the final presentation.
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