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ABSTRACT

We consider structural topology optimization problems in which the design variables are chosen from
a finite set of given values. The design variables can represent areas in truss structures, thicknesses in
the two-dimensional case, and materials in the three dimensional situation. Our interest is in minimum
weight problems with constraints on the global stiffness of the structure, i.e. the compliance, and on
local stress properties, such as the von Mises stresses.

The main intention is to present the theoretical and practical aspects of a new convergent method for
solving the considered class of problems to global optimality. The method is based on the concept of
branch and cut ([2]) and will after a finite number of iterations (solved subproblems) correctly determine
a global minimizer or deem the problem as infeasible.

We state the optimal design problem in a format based on a finite element discretization of the contin-
uum problem. In this ground structure approach we have n finite elements in a two or three-dimensional
design space with appropriate support conditions, see e.g. [1]. For a given vector t ∈ Bn of design vari-
ables the stiffness matrix of the structure in global coordinates is denoted by K(t) ∈ Rd×d. Here,
d denotes the number of degrees of freedom. We throughout assume that the stiffness matrix K(t)
depends linearly on t, i.e.,

K(t) :=
n∑

j=1

tjKj

where tjKj is the scaled symmetric and positive semi-definite stiffness matrix of the j-th element. The
discrete design variables can be interpreted as

tj =
{

1 if the j-th element contains material, and
0 otherwise.



We consider M load conditions where the static loads are given by the vectors f1, . . . , fM ∈ Rd\{0}
in global coordinates. The elastic equilibrium equations for the structure subjected to the static external
load vector fk is assumed to be given by K(t)uk = fk for k = 1, . . . ,M , where uk ∈ Rd denotes the
nodal displacement vector corresponding to fk. We consider the following minimum weight problem
with constraints on the global stiffness and local stresses

minimize
t,u1,...,uM

n∑
j=1

tjρj

(P) subject to K(t)uk = fk ∀ k

fT
k uk ≤ γk ∀ k

uT
k Wjuk ≤ σ2 ∀ k,∀ j : tj = 1

t ∈ {0, 1}n.

The density ρj for the j-th element is assumed to be strictly positive. The compliances fT
k uk for the

different load cases are bounded by the given scalars γk > 0 for k = 1, . . . ,M . The stress constrains
are described by the symmetric and positive semi-definite matrices Wj ∈ Rd×d and the stress bound
σ > 0. Notice that the stress constraints are only included in the formulation if the corresponding design
variable is equal to one, i.e. if the corresponding element contains material.

In branch and cut methods a possibly very long sequence of relaxations, i.e. optimization problems
which provide lower bounds on the objective function of the considered problem, are solved. These
relaxations are ideally both tractable and good approximations of the considered discrete problem. One
class of continuous relaxations of the discrete problem (P) is obtained by first (temporarily) remov-
ing some of the complicating constraints from the formulation, in this case the stress constraints, and
then relaxing the constraints t ∈ {0, 1}n to t ∈ [0, 1]n. The resulting continuous relaxation is a mini-
mum weight problem with compliance constraints. This class of problems has been extensively studied
and several convex and tractable reformulations of this relaxation are available, see [3] and references
therein. We present new reformulations of this relaxation which are suitable for a practical implemen-
tation of a nonlinear branch and cut method. The relaxations and their reformulations also provide the
foundation for several new heuristics, based on neighborhood search, designed to find good feasible
designs and to improve on already found feasible designs.

The rate of convergence of the branch and cut method is closely related to the quality of the relaxations.
Hence, we present an algorithm for generating valid linear inequalities, i.e. additional linear constraints,
and cuts to strengthen the quality of the relaxations. This algorithm exploits the mathematical structure
and the underlying mechanical assumptions of the problem, in particular the disjunctive nature of the
constraints and variables.

The global optimization method is developed and implemented within the PLATO-N project and is
used to solve benchmark examples which are used to validate other methods. The main aspects of the
ongoing object oriented implementation of the method as well as numerical examples will be presented.
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