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ABSTRACT

The coupling of finite and boundary element methods is well established for elliptic problems such as
elastostatics even for non-conforming interfaces [5]. Similarly, the FETI method [1] and its extension
to boundary element methods, the BETI method [3], have been developed. In this work, these ideas are
transferred to dynamic problems, where the boundary element method is especially appealing for the
treatment of unbounded domains [4].

The main idea is based on the realization of Dirichlet-to-Neumann maps for each subdomain indepen-
dently by either a finite element or a boundary element discretization. Whereas such concept has been
analyzed for the case of elliptic problems [5], it is now carried out for dynamic problems at each time
step. In case of a finite element discretization, the system of ordinary partial differential equations is
treated by the Newmark algorithm [2] and the resulting series of systems of equations has at each time
step the same algebraic structure as in the static case. The Schur complement of such a system is thus a
finite element realization of the discrete Dirichlet-to-Neumann map. On the other hand, the time domain
boundary element method yields a system of convolution equations. Here, the convolution quadrature
method is used [4] which finally gives a series of linear systems of equations which also gives rise to
the discrete Dirichlet-to-Neumann map.

The interface conditions due to the partitioning of the original problem are incorporated by means of
Lagrange multipliers in a weighted form. This enables the independent choice of interface discretiza-
tions as known from the mortar methods [6]. Hence, the nodes of the spatial discretizations need not be
coincident and, moreover, different polynomial orders of trial functions can be used at the respective
sides of the interfaces. The global system of equations is arranged in the same way as in the FETI and
BETI methods [1, 3] and its solution is carried out by a parallel algorithm.

An example of the application of this methodology is the numerical analysis of an individual foot-
ing which is subject to a vertical step load on its upper surface and resting on an elastic halfspace.
The discretization and the numerical outcome are shown in figure 1. Clearly, the discretization is non-
conforming since neither the nodes are coincident nor the approximation orders are equal for the dif-
ferent subdomains. The results show the vertical displacements at different points compared with the
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Figure 1: Numerical analysis of an individual footing under a dynamic step load — discretization by fi-
nite and boundary element methods (left) and vertical displacements against time for different
positions compared with the corresponding static solution.

solution of the corresponding static problem. These points are the midpoint of the upper surface of the
foundation (top), the midpoint of the lower surface (bottom), and a point on the surface of the soil at
the far end of the discretization. The propagation of the disturbance along the surface is visible for the
observation point on the soil surface, which consists of the pressure, shear and Rayleigh waves. More-
over, the results all converge to the static solution which indicates that the geometric damping of the
halfspace is represented well and no spurious wave reflections occur.
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