Identification of the Discontinuity in the Medium by Thermal Imaging

Victor Isakov¹, Kyoungsun Kim² and * Gen Nakamura³

Key Words: Inverse boundary value problem, heat conductivity, unknown inclusion, thermal imaging.

ABSTRACT

Let Ω be a bounded domain in \mathbb{R}^n $(1 \le n \le 3)$ with C^2 boundary if $n \ge 2$. We consider a heat conductor Ω with an inclusion D such that $\overline{D} \subset \Omega$, $\Omega \setminus \overline{D}$ is connected, ∂D is of class $C^{1,\alpha}$ $(0 < \alpha \le 1)$ if $n \ge 2$. Let the heat conductivity $\gamma(x)$ in Ω be given as follows:

$$\gamma(x) = \begin{cases} 1 & \text{for } x \in \Omega \setminus \overline{D} \\ k & \text{for } x \in D \end{cases}$$
(1)

with a positive constant k which is not 1.

Now consider a boundary value problem to find a unique weak solution $u = u(f) \in H^{1,0}(\Omega_T)$ which satisfies

$$\begin{cases} \mathcal{P}_D u(x,t) := \partial_t u(x,t) - \operatorname{div}_x(\gamma(x,t)\nabla_x u(x,t)) = 0 \quad \text{in } \Omega_T := \Omega \times (0,T), \\ \partial_\nu u(x,t) = f(x,t) \quad \text{in } \partial\Omega_T, \quad u(x,0) = 0 \quad \text{for } x \in \Omega \end{cases}$$
(2)

for a given $f \in H^{1/2,0}(\partial \Omega_T)$.

It is well known that the boundary value problem (2) is well posed. That is there exists a unique solution $u = u(f) \in H^{1,0}(\Omega_T)$ to (2) and u(f) depends continuously on $f \in H^{1/2,0}(\partial \Omega_T)$. Based on this, we define the *Neumann-to-Dirichlet map* Λ_D as follows.

$$\Lambda_D : L^2((0,T); (H^{1/2}(\partial\Omega))^*) \to L^2((0,T); H^{1/2}(\partial\Omega))$$
$$f \mapsto u(f)|_{\partial\Omega_T}.$$

Now, we take the Neumann-to-Dirichlet map Λ_D as measured data. Then, our inverse problem is to reconstruct the unknown inclusion D from Λ_D .

For $(y, s), (y', s') \in \Omega_T \setminus \overline{D}$ such that $(y, s) \neq (y', s')$, let $\Gamma(x, t; y, s)$ and $\Gamma^*(x, t; y, s)$ be the fundamental solutions of \mathcal{P}_{\emptyset} and $\mathcal{P}^*_{\emptyset}$, respectively. By Runge's approximation theorem given in [DKN], we can select two sequences of functions $\{v^j_{(y,s)}\}$ and $\{\varphi^j_{(y',s')}\}$ in $H^{2,1}(\Omega_{(-\varepsilon,T+\varepsilon)})$ for arbitrary constant $\varepsilon > 0$ such that

$$\begin{cases} \mathcal{P}_{\emptyset} v_{(y,s)}^{j} = 0 & \text{in } \Omega_{(-\varepsilon,T+\varepsilon)}, \\ v_{(y,s)}^{j}(x,t) = 0 & \text{if } -\varepsilon < t \leq 0, \\ v_{(y,s)}^{j} \to \Gamma(\cdot,\cdot;y,s) & \text{in } H^{2,1}(U) \text{ as } j \to \infty, \end{cases} \\ \begin{cases} \mathcal{P}_{\emptyset}^{*} \varphi_{(y',s')}^{j} = 0 & \text{in } \Omega_{(-\varepsilon,T+\varepsilon)}, \\ \varphi_{(y',s')}^{j}(x,t) = 0 & \text{if } T \leq t < T+\varepsilon, \\ \varphi_{(y',s')}^{j} \to \Gamma^{*}(\cdot,\cdot;y',s') & \text{in } H^{2,1}(U) \text{ as } j \to \infty \end{cases} \end{cases}$$

for each open set U in $\Omega_{(-\varepsilon,T+\varepsilon)}$ such that $\overline{U} \subset \Omega_{(-\varepsilon,T+\varepsilon)}$, $\Omega_{(-\varepsilon,T+\varepsilon)} \setminus \overline{U}$ is connected, U has a Lipschitz boundary ∂U , and \overline{U} does not contain (y,s) and (y',s'). We call these $\{v_{(y,s)}^j\}, \{\varphi_{(y',s')}^j\}$ Runge's approximation functions.

Definition 1. ([DKN]) Let $(y, s), (y', s') \in \Omega_T$ be such that $(y, s) \neq (y', s')$, and $\{v_{(y,s)}^j\}, \{\varphi_{(y',s')}^j\} \subset H^{2,1}(\Omega_{(-\varepsilon,T+\varepsilon)})$ be Runge's approximation functions as above. Then, we define the pre-indicator function I(y', s'; y, s) as follows.

$$I(y',s';y,s) = \lim_{j \to \infty} \int_{\partial \Omega_T} \left[\partial_{\nu} v^j_{(y,s)} |_{\partial \Omega_T} \varphi^j_{(y',s')} |_{\partial \Omega_T} - \Lambda_D(\partial_{\nu} v^j_{(y,s)}) |_{\partial \Omega_T} \partial_{\nu} \varphi^j_{(y's')} |_{\partial \Omega_T} \right]$$

whenever the limit exists.

Definition 2. Let $C := \{c(\lambda); 0 \le \lambda \le 1\}$ be a non-selfintersecting C^1 curve in $\overline{\Omega}$ which joins $c(0), c(1) \in \partial\Omega$ and $e(\lambda) := -\dot{c}(\lambda)/|\dot{c}(\lambda)|$. (We call this c a needle.) Then, for each $c(\lambda) \in \Omega_T$ and each fixed $s \in (0, T)$, we define the indicator function $J(c(\lambda), s)$ by

$$J(c(\lambda), s) := \lim_{\epsilon \downarrow 0} \limsup_{\delta \downarrow 0} |I(c(\lambda - \delta) + \epsilon e(\lambda - \delta), s + \epsilon^2; c(\lambda - \delta), s)|$$
(3)

whenever the limit exists.

Theorem 1. Let C and $e(\lambda)$ be given as in Definition 2 above. Then, for a fixed $s \in (0,T)$, we have the followings.

- (i) If the curve C is in $\Omega \setminus \overline{D}$ except c(0) and c(1), then $J(c(\lambda), s) < \infty$ for all $\lambda, 0 \le \lambda \le 1$.
- (ii) Let $C \cap \overline{D} \neq \emptyset$ and λ_s $(0 < \lambda_s < 1)$ be such that $c(\lambda_s) \in \partial D$, $c(\lambda) \in \Omega \setminus \overline{D}$ $(0 < \lambda < \lambda_s)$. Then,

$$\lambda_s = \inf\{0 < \lambda < 1; J(c(\lambda'), s) < \infty \text{ for any } 0 < \lambda' < \lambda\}.$$
(4)

REFERENCES

[DKN] Y. Daido, H. Kang, and G. Nakamura. "A probe method for the inverse boundary value problem of non-stationary heat equations". *Inverse Problem*, Vol **23**, 1787–1800, 2007.

and