Identification of the Discontinuity in the Medium by Thermal Imaging

Victor Isakov ${ }^{1}$, Kyoungsun Kim ${ }^{2}$ and ${ }^{*}$ Gen Nakamura ${ }^{3}$
1 Department of Mathematics and Statistics, Wichita State University
Wichita, KS 67260-0033, USA gnaka@math.sci.hokudai.ac.jp
2 Department of Mathematics, Hokkaido University Sapporo 060-0810, Japan kim@math.sci.hokudai.ac.jp
${ }^{3}$ Department of Mathematics, Hokkaido University
Sapporo 060-0810, Japan gnaka@math.sci.hokudai.ac.jp

Key Words: Inverse boundary value problem, heat conductivity, unknown inclusion, thermal imaging.

Abstract

Let Ω be a bounded domain in $\mathbb{R}^{n}(1 \leq n \leq 3)$ with C^{2} boundary if $n \geq 2$. We consider a heat conductor Ω with an inclusion D such that $\bar{D} \subset \Omega, \Omega \backslash \bar{D}$ is connected, ∂D is of class $C^{1, \alpha}(0<\alpha \leq 1)$ if $n \geq 2$. Let the heat conductivity $\gamma(x)$ in Ω be given as follows: $$
\gamma(x)= \begin{cases}1 & \text { for } x \in \Omega \backslash \bar{D} \tag{1}\\ k & \text { for } x \in D\end{cases}
$$

with a positive constant k which is not 1 .
Now consider a boundary value problem to find a unique weak solution $u=u(f) \in H^{1,0}\left(\Omega_{T}\right)$ which satisfies

$$
\left\{\begin{array}{l}
\mathcal{P}_{D} u(x, t):=\partial_{t} u(x, t)-\operatorname{div}_{x}\left(\gamma(x, t) \nabla_{x} u(x, t)\right)=0 \quad \text { in } \Omega_{T}:=\Omega \times(0, T), \tag{2}\\
\partial_{\nu} u(x, t)=f(x, t) \text { in } \partial \Omega_{T}, \quad u(x, 0)=0 \text { for } x \in \Omega
\end{array}\right.
$$

for a given $f \in H^{1 / 2,0}\left(\partial \Omega_{T}\right)$.
It is well known that the boundary value problem (2) is well posed. That is there exists a unique solution $u=u(f) \in H^{1,0}\left(\Omega_{T}\right)$ to (2) and $u(f)$ depends continuously on $f \in H^{1 / 2,0}\left(\partial \Omega_{T}\right)$. Based on this, we define the Neumann-to-Dirichlet map Λ_{D} as follows.

$$
\begin{aligned}
\Lambda_{D}: L^{2}\left((0, T) ;\left(H^{1 / 2}(\partial \Omega)\right)^{*}\right) & \rightarrow L^{2}\left((0, T) ; H^{1 / 2}(\partial \Omega)\right) \\
f & \left.\mapsto u(f)\right|_{\partial \Omega_{T}} .
\end{aligned}
$$

Now, we take the Neumann-to-Dirichlet map Λ_{D} as measured data. Then, our inverse problem is to reconstruct the unknown inclusion D from Λ_{D}.

For $(y, s),\left(y^{\prime}, s^{\prime}\right) \in \Omega_{T} \backslash \bar{D}$ such that $(y, s) \neq\left(y^{\prime}, s^{\prime}\right)$, let $\Gamma(x, t ; y, s)$ and $\Gamma^{*}(x, t ; y, s)$ be the fundamental solutions of \mathcal{P}_{\emptyset} and $\mathcal{P}_{\emptyset}^{*}$, respectively. By Runge's approximation theorem given in [DKN], we can select two sequences of functions $\left\{v_{(y, s)}^{j}\right\}$ and $\left\{\varphi_{\left(y^{\prime}, s^{\prime}\right)}^{j}\right\}$ in $H^{2,1}\left(\Omega_{(-\varepsilon, T+\varepsilon)}\right)$ for arbitrary constant $\varepsilon>0$ such that

$$
\begin{cases}\mathcal{P}_{\emptyset} v_{(y, s)}^{j}=0 & \text { in } \quad \Omega_{(-\varepsilon, T+\varepsilon)}, \\ v_{(y, s)}^{j}(x, t)=0 & \text { if } \quad-\varepsilon<t \leq 0, \\ v_{(y, s)}^{j} \rightarrow \Gamma(\cdot, \cdot ; y, s) & \text { in } \quad H^{2,1}(U) \text { as } \quad j \rightarrow \infty\end{cases}
$$

and

$$
\begin{cases}\mathcal{P}_{\emptyset}^{*} \varphi_{\left(y^{\prime}, s^{\prime}\right)}^{j}=0 & \text { in } \quad \Omega_{(-\varepsilon, T+\varepsilon)}, \\ \varphi_{\left(\left(y^{\prime}, s^{\prime}\right)\right.}(x, t)=0 & \text { if } \quad T \leq t<T+\varepsilon, \\ \varphi_{\left(y^{\prime}, s^{\prime}\right)}^{j} \rightarrow \Gamma^{*}\left(\cdot, \cdot ; y^{\prime}, s^{\prime}\right) & \text { in } H^{2,1}(U) \text { as } j \rightarrow \infty\end{cases}
$$

for each open set U in $\Omega_{(-\varepsilon, T+\varepsilon)}$ such that $\bar{U} \subset \Omega_{(-\varepsilon, T+\varepsilon)}, \Omega_{(-\varepsilon, T+\varepsilon)} \backslash \bar{U}$ is connected, U has a Lipschitz boundary ∂U, and \bar{U} does not contain (y, s) and $\left(y^{\prime}, s^{\prime}\right)$. We call these $\left\{v_{(y, s)}^{j}\right\},\left\{\varphi_{\left(y^{\prime}, s^{\prime}\right)}^{j}\right\}$ Runge's approximation functions.

Definition 1. ([DKN]) Let $(y, s),\left(y^{\prime}, s^{\prime}\right) \in \Omega_{T}$ be such that $(y, s) \neq\left(y^{\prime}, s^{\prime}\right)$, and $\left\{v_{(y, s)}^{j}\right\},\left\{\varphi_{\left(y^{\prime}, s^{\prime}\right)}^{j}\right\} \subset$ $H^{2,1}\left(\Omega_{(-\varepsilon, T+\varepsilon)}\right)$ be Runge's approximation functions as above. Then, we define the pre-indicator function $I\left(y^{\prime}, s^{\prime} ; y, s\right)$ as follows.

$$
I\left(y^{\prime}, s^{\prime} ; y, s\right)=\lim _{j \rightarrow \infty} \int_{\partial \Omega_{T}}\left[\partial_{\nu} v_{(y, s)}^{j}\left|\partial \Omega_{T} \varphi_{\left(y^{\prime}, s^{\prime}\right)}^{j}\right| \partial \Omega_{T}-\Lambda_{D}\left(\partial_{\nu} v_{(y, s)}^{j}\right)\left|\partial \Omega_{T} \partial_{\nu} \varphi_{\left(y^{\prime} s^{\prime}\right)}^{j}\right| \partial \Omega_{T}\right]
$$

whenever the limit exists.
Definition 2. Let $C:=\{c(\lambda) ; 0 \leq \lambda \leq 1\}$ be a non-selfintersecting C^{1} curve in $\bar{\Omega}$ which joins $c(0), c(1) \in \partial \Omega$ and $e(\lambda):=-\dot{c}(\lambda) /|\dot{c}(\lambda)|$. (We call this c a needle.) Then, for each $c(\lambda) \in \Omega_{T}$ and each fixed $s \in(0, T)$, we define the indicator function $J(c(\lambda), s)$ by

$$
\begin{equation*}
J(c(\lambda), s):=\lim _{\epsilon \downarrow 0} \limsup _{\delta \downarrow 0}\left|I\left(c(\lambda-\delta)+\epsilon e(\lambda-\delta), s+\epsilon^{2} ; c(\lambda-\delta), s\right)\right| \tag{3}
\end{equation*}
$$

whenever the limit exists.
Theorem 1. Let C and $e(\lambda)$ be given as in Definition 2 above. Then, for a fixed $s \in(0, T)$, we have the followings.
(i) If the curve C is in $\Omega \backslash \bar{D}$ except $c(0)$ and $c(1)$, then $J(c(\lambda), s)<\infty$ for all $\lambda, 0 \leq \lambda \leq 1$.
(ii) Let $C \cap \bar{D} \neq \emptyset$ and $\lambda_{s}\left(0<\lambda_{s}<1\right)$ be such that $c\left(\lambda_{s}\right) \in \partial D, c(\lambda) \in \Omega \backslash \bar{D}\left(0<\lambda<\lambda_{s}\right)$. Then,

$$
\begin{equation*}
\lambda_{s}=\inf \left\{0<\lambda<1 ; J\left(c\left(\lambda^{\prime}\right), s\right)<\infty \quad \text { for any } 0<\lambda^{\prime}<\lambda\right\} \tag{4}
\end{equation*}
$$

REFERENCES

[DKN] Y. Daido, H. Kang, and G. Nakamura. "A probe method for the inverse boundary value problem of non-stationary heat equations". Inverse Problem, Vol 23, 1787-1800, 2007.

