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ABSTRACT

Let Ω be a bounded domain in Rn (1 ≤ n ≤ 3) with C2 boundary if n ≥ 2. We consider a heat
conductor Ω with an inclusion D such that D ⊂ Ω, Ω\D is connected, ∂D is of class C1,α (0 < α ≤ 1)
if n ≥ 2. Let the heat conductivity γ(x) in Ω be given as follows:

γ(x) =

{
1 for x ∈ Ω \D

k for x ∈ D
(1)

with a positive constant k which is not 1.

Now consider a boundary value problem to find a unique weak solution u = u(f) ∈ H1,0(ΩT ) which
satisfies

{
PDu(x, t) := ∂tu(x, t)− divx(γ(x, t)∇xu(x, t)) = 0 in ΩT := Ω× (0, T ),
∂νu(x, t) = f(x, t) in ∂ΩT , u(x, 0) = 0 for x ∈ Ω

(2)

for a given f ∈ H1/2,0(∂ΩT ).

It is well known that the boundary value problem (2) is well posed. That is there exists a unique solution
u = u(f) ∈ H1,0(ΩT ) to (2) and u(f) depends continuously on f ∈ H1/2,0(∂ΩT ). Based on this, we
define the Neumann-to-Dirichlet map ΛD as follows.

ΛD : L2((0, T ); (H1/2(∂Ω))∗) → L2((0, T );H1/2(∂Ω))
f 7→ u(f)|∂ΩT

.

Now, we take the Neumann-to-Dirichlet map ΛD as measured data. Then, our inverse problem is to
reconstruct the unknown inclusion D from ΛD.



For (y, s), (y′, s′) ∈ ΩT \D such that (y, s) 6= (y′, s′), let Γ(x, t; y, s) and Γ∗(x, t; y, s) be the funda-
mental solutions of P∅ and P∗∅ , respectively. By Runge’s approximation theorem given in [DKN], we
can select two sequences of functions {vj

(y,s)} and {ϕj
(y′,s′)} in H2,1(Ω(−ε,T+ε)) for arbitrary constant

ε > 0 such that 



P∅vj
(y,s) = 0 in Ω(−ε,T+ε),

vj
(y,s)(x, t) = 0 if − ε < t ≤ 0,

vj
(y,s) → Γ(·, ·; y, s) in H2,1(U) as j →∞,

and 



P∗∅ϕj
(y′,s′) = 0 in Ω(−ε,T+ε),

ϕj
(y′,s′)(x, t) = 0 if T ≤ t < T + ε,

ϕj
(y′,s′) → Γ∗(·, ·; y′, s′) in H2,1(U) as j →∞

for each open set U in Ω(−ε,T+ε) such that U ⊂ Ω(−ε,T+ε), Ω(−ε,T+ε) \ U is connected, U has a
Lipschitz boundary ∂U , and U does not contain (y, s) and (y′, s′). We call these {vj

(y,s)}, {ϕj
(y′,s′)}

Runge’s approximation functions.

Definition 1. ([DKN]) Let (y, s), (y′, s′) ∈ ΩT be such that (y, s) 6= (y′, s′), and {vj
(y,s)}, {ϕj

(y′,s′)} ⊂
H2,1(Ω(−ε,T+ε)) be Runge’s approximation functions as above. Then, we define the pre-indicator func-
tion I(y′, s′; y, s) as follows.

I(y′, s′; y, s) = lim
j→∞

∫

∂ΩT

[
∂νv

j
(y,s)|∂ΩT

ϕj
(y′,s′)|∂ΩT

− ΛD(∂νv
j
(y,s))|∂ΩT

∂νϕ
j
(y′s′)|∂ΩT

]

whenever the limit exists.

Definition 2. Let C := {c(λ) ; 0 ≤ λ ≤ 1} be a non-selfintersecting C1 curve in Ω which joins
c(0), c(1) ∈ ∂Ω and e(λ) := −ċ(λ)/|ċ(λ)|. (We call this c a needle.) Then, for each c(λ) ∈ ΩT and
each fixed s ∈ (0, T ), we define the indicator function J(c(λ), s) by

J(c(λ), s) := lim
ε↓0

lim sup
δ↓0

|I(c(λ− δ) + εe(λ− δ), s + ε2; c(λ− δ), s)| (3)

whenever the limit exists.

Theorem 1. Let C and e(λ) be given as in Definition 2 above. Then, for a fixed s ∈ (0, T ), we have
the followings.

(i) If the curve C is in Ω \D except c(0) and c(1), then J(c(λ), s) < ∞ for all λ, 0 ≤ λ ≤ 1.

(ii) Let C ∩ D 6= ∅ and λs (0 < λs < 1) be such that c(λs) ∈ ∂D, c(λ) ∈ Ω \ D (0 < λ < λs).
Then,

λs = inf{ 0 < λ < 1 ; J(c(λ′), s) < ∞ for any 0 < λ′ < λ }. (4)
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