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ABSTRACT

The interaction between sediment transport and water flow plays an important role in many river and
coastal engineering applications. In recent years, the improved understanding of physical processes
involved in the study of river hydraulics has led to the development of physical-mathematical formula-
tions to explain the natural phenomena and to forecast changes due to, for example, human interference.
Nevertheless, accurate representation of morphodynamic processes and the ability to propagate changes
in the riverbed over a wide range of space and time scales makethe design and implementation of ap-
propriate numerical schemes challenging.

Prediction of changes of the bed in natural channels can be analysed by coupling a hydrodynamic flow
solver which acts as a sediment driving force and a bed evolution model which accounts for sediment
flux and bathymetry changes. Such a modelling system is oftenreferred to as amorphodynamic model.
The morphodynamic model emerges as a mixed hyperbolic–parabolic system of partial differential
equations (PDE’s). It is based on a depth–average over the water column resulting in shallow water the-
ory augmented by a flow resistance term, together with a depth–averaged conservation law expressing
continuity of sediment. A phenomenological sediment transport function relates the rate of sediment
transport to the local mean fluid velocity. Here, we considerthat sediment particles are carried along
via bedload transport.

There are special difficulties associated with solving hyperbolic equations, including the propagation
of sediment bores or discontinuous steps in the bedform, anda good numerical implementation must
overcome these problems. In this work, we use a novel space and space–time discontinuous Galerkin
finite element method (DGFEM). The use of DGFEM methods for these problems is also of interest
because it is local and can thus deal efficiently with: (i) theimprovement of the order of accuracy, thus
allowing efficientp-adaptivity; (ii) the refinement of the grid, without takinginto account the continuity
restrictions typical of conforming finite element methods,thus allowing efficienth-adaptivity; and, (iii)
performing parallel computations.
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Figure 1:Flow and sediment transport in a contraction channel (a) streamwise discharge and (b) bottom profile.

For a DGFEM discretization of hydrodynamic shallow water flows, we refer to [2]. In this work, we
extend and refine that method to include the bed evolution as well and a partly nonconservative formu-
lation is used which allows the application of the unified space and space–time discontinuous Galerkin
discretization for hyperbolic systems of partial differential equations with nonconservative products
developed in [1] to solve the entire morphodynamic model. Inour case, the nonconservative product
consists of the topographic terms present in the momentum equations. For the marching in time, we
have made use of advanced time stepping schemes to deal with the multiscale property of the morpho-
dynamic problem. For space DGFEM, we intertwine a fifth-order Runge-Kutta scheme for the fast or
pseudo-time to solve the hydrodynamic equations to steady state. It is designed to be a dissipative time
integration scheme to efficiently reach this hydrodynamic steady–state in pseudo–time [5]. An accurate
explicit time discretization is used for the sediment equation (a third order Runge-Kutta scheme [2,3]).
For the space-time DGFEM, we used the fifth-order Runge-Kutta scheme in pseudo-time of Van der
Vegt and Van der Ven [5].

In this work, the resulting numerical scheme is verified by comparing simulations against an extensive
suite of (semi–)analytical solutions and their applicability is shown in two test cases: the evolution of
an initially flat bed in a channel with a contraction (Figure 1), and the comparison of the numerical
results against field data of a trench excavated in the main channel of the Paraná river near Paraná
City, Argentina. Both space and space-time DGFEM methods show a very good agreement between
model simulations and analytical solutions, and are able tocapture travelling discontinuities without
generating spurious oscillations.
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