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ABSTRACT

Diffusion in multi-component systems can be characterized by three attributes: (i) the vacancy mech-
anism of diffusion for “slowly” diffusing substitutional components, (ii) the process of non-uniform
generation and annihilation of vacancies, (iii) the “quick” diffusion of atoms of interstitial components.
To simulate diffusional phase transformation, it is necessary to solve the coupled problem of diffusion
and interface migration, incorporating (i), (ii), (iii) in all phases. However, in most computational model
the interface is assumed to be sharp and some artificial interface contact conditions, as local equilib-
rium with partitioning, local equilibrium with negligible partitioning, para-equilibrium, etc., by [1], are
applied at the interface. Moreover, for multi-component systems (compound from 3 or more compo-
nents) the reliable theory of existence of (classical or weak) solutions of corresponding mathematical
initial and boundary value problems and of convergence of sequences (e. g. of Rothe) of approximate
solutions, like that from [2] for binary alloys, is missing or insufficient, containing many open problems.

A new multi-component model, taking into account a real migrating interface of finite thickness h, based
on the balance for the total Gibbs energy in the interface, has been derived in [3]. Following the same
idea, coming from the Onsager thermodynamic extremal principle, [5] introduces a one-dimensional
two-phase system, containing two phases α and γ (the interface is considered as an additional phase
β) with a finite number r of substitutional components, in which the γ → α transformation occurs;
the MATLAB-supported software simulations are used to the quantitative analysis of the steady-state
massive phase transformation in a Fe-Cr-Ni system and also to the diffusion-induced grain boundary
motion. Nevertheless, this approach needs generalizations in several directions, namely: (a) including
some finite number s of interstitial components, (b) respecting the existence of (non-ideal) sources and
sinks for vacancies, following the attribute (ii), (c) development of methods, algorithms and software
for non-stationary simulations, (d) extension to two- and three-dimensional geometrical configurations,
handling also curved interfaces. Some of these generalizations will be discussed in this contribution.

The concentration of particular components at every location x can be characterized by r molar fractions
ck with k ∈ {1, . . . , r}, corresponding to substitutional components, satisfying an additional condition
c1 + . . . + cr = 1, and s molar fractions ck with k ∈ {r + 1, . . . , r + s}, corresponding to interstitial
components; briefly c = (c1, . . . , cr+s). Further variables in the system are 3 components of a finite



velocity v = (v1, v2, v3) and also 3(r + s) components of diffusion fluxes jkp, k ∈ {1, . . . , r + s},
p ∈ {1, 2, 3}. Let Ω be the molar volume. In the moving reference frame with dot symbols denoting
partial time derivatives then the mass conservation law for an arbitrary component k reads

ċk − vp∇pck = −Ω∇pjkp ;
here p are sum indices from {1, 2, 3} following the Einstein summation rule, similarly we shall later
apply indices k, l from {1, . . . , r + s}. The thermodynamic extremal principle yields

jkp = −ρkl∇pµl(c)
with certain material characteristics ρkl and chemical potentials µl. Now we have 4(r + s) equations
for 4(r + s) + 3 unknowns. To complete the system, we need to evaluate velocity components vp as
functions of c, evidently incorporating µl(c) again. Unfortunately, this is in general rather complicated:
namely [4] demonstrates that such relations have to include, in addition to the classical terms with
∇pµl(c), other (divergence-free) ones, covering the vacancy mechanism by (ii). Let us also notice that
only r + s− 1 components of c are independent; this enables us to reduce the number of equations by
one (which is the well-known trick in the simplified theory of binary substitutional alloys where, after
all substitutions, only one final equations for c1 remains).

For illustration, let us show some formally simple results for a one-dimensional system: we can remove
an index 1 and write a prime symbol instead of ∇1, α-phase is located from xL to 0, γ-phase from h to
xR, max(−xL, xR − h) << h. Ignoring all complicated improvements coming from (ii) and assuming
that v, for some prescribed interface mobility M , is an interface velocity, considered as a function of t
only (not of x), we can write

ċ− vc′ = −Ωj′ , v =
Ω
M

∫ h

0
ckµ

′
k(c) dx

and, denoting by C an integral from xL to x, applied to ċ, consequently
C − v(c− c(xL)) = −Ωj , C(xR)− v(c(xR)− c(xL)) = 0

because in a closed system (although xL and xR are moving in time due to v 6= 0) we are allowed to
set j(xL) = j(xR) = 0. Moreover (after long calculations) we are able to express j as

N(x)j = −B(c)c′ −K(c)c
where a diagonal matrix N contains characteristics of diffusion; a full square matrix B (in practice
close to a unit one) and a diagonal matrix K (non-zero only inside β) are complicated functions of
r + s − 1 independent components of c (1 substitutional component has been removed), identified by
experimental research of chemical potentials. The system can be then formulated (at any time) in form

B(c)c′ + K(c)c + vN(x)c = vN(x)cL + N(x)C ,

solvable numerically using an iterative MATLAB-supported FDM-based procedure.

REFERENCES

[1] A. Schneider and G. Inden, “Fundamentals and basic methods for microstructure simulation
above the atomic scale”. In: Continuum Scale Simulation of Engineering Materials, edited
by D. Raabe, F. Roters, F. Barlat and L.-Q. Chen, Wiley-VCH, 2004, Part I, 36 pp.

[2] U. F. Mayer and G. Simonett, “Classical solutions for diffusion-induced grain boundary
motion”. Journal of Mathematical Analysis and Applications 234, pp. 660–674 (1999).
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