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ABSTRACT

The challenging task in computational engineering is to model and predict numerically the behavior of
engineering structures in a realistic manner. Beside sophisticated numerical procedures to map physical
phenomena and processes, an adequate description of available data covering the content of provided
information is of prime importance. Generally, the availability of information in engineering practice
is limited due to available resources. Far beyond the capability to specify crisp values uncertain data
are imprecise, diffuse, fluctuating, incomplete, fragmentary and frequently expert specified. Beside ob-
jective characteristics like randomness, available data are influenced by subjectivity to a considerable
extend. This impedes the specification of unique data models with crisp parameter values to describe
the uncertainty. Applying imprecise probabilities objective components of the uncertainty as well as
subjective components can be considered simultaneously [1]. A sophisticated procedure to handle im-
precise probabilities provide the uncertainty model fuzzy randomness [2]. Since fuzziness, randomness,
and fuzzy randomness can be processed simultaneously, it is denoted as generalized uncertainty model.

The consideration of fuzzy random functions X̃(t) with t = {θ, τ, ϕ} (spatial coordinates θ, time
τ , further parameters ϕ) within a structural analysis is referred to as fuzzy stochastic analysis. It is
constituted by the mapping of fuzzy random input functions X̃(t) = X̃1(t), X̃2(t), ..., X̃l(t) onto the
fuzzy random result functions Z̃(t) = Z̃1(t), Z̃2(t), ..., Z̃m(t) according to

FFSA : X̃(t) ∼−→ Z̃(t) . (1)

The mapping model f̃(X̃(t)) = Z̃(t) represents the computational model of the fuzzy stochastic analy-
sis. A numerical realization of fuzzy stochastic analysis is enabled by a bunch parameter represen-
tation of fuzzy random functions and is described in detail in [2, 3]. Fuzzy random input functions
X̃(t) = X(s̃, t) as well as fuzzy random result functions Z̃(t) = Z(σ̃, t) are expressed in dependency
of fuzzy bunch parameter s̃ respectively σ̃. Introducing m̃(s̃) = f̃E(X(s̃, t)), Eq. (1) is transformed into
the mapping

σ̃ = (σ̃1, σ̃2, ..., σ̃m1) = m̃(s̃1, s̃2, ..., s̃n) . (2)



Applying the α-discretization to the fuzzy bunch parameter, an optimization problem is solved in order
to determine the α-level sets of the fuzzy bunch parameters (σ̃1, σ̃2, ..., σ̃m1), see also [2, 3]. This
algorithm is referred to as fuzzy analysis. Within a fuzzy analysis a stochastic analysis FSA, e.g. ap-
plying Monte Carlo simulation, is processed repeatedly. For each realization of the stochastic analysis
the deterministic fundamental solution FA is carried out.

The repetition of the stochastic analysis and thus of the deterministic fundamental solution increases
the computational effort considerable. An improvement of the numerical efficiency can be achieved
replacing the expensive analysis by an efficient surrogate model. The idea of such a surrogate model
N, also referred to as metamodel, is to approximate the response surface of the respective analysis and
to replace the results Z̃, if the approximation quality is sufficiently high, by Z̃

∗
. One strategy aims on a

substitution of the deterministic fundamental solution FA with

NA : x(t) → z∗(t) . (3)

This strategy is straightforward and well-established in the engineering practice [4]. Introducing fuzzy
random functions X̃(t), including fuzzy random fields X̃(θ), the dimensionality of a problem may
exceed the applicability of metamodels. An alternative strategy substitutes the response surface of the
stochastic analysis FSA by a metamodel.

NSA : X(t) → Z∗(t) . (4)

Thereby, metamodels N based on neural networks are appropriate for the application in engineering. An
artificial neural network utilizes the advantages of the human information processing system like com-
plexity, nonlinearity, and parallelism [5]. It is constituted by neurons which are connected by synapses,
it has the ability of mapping input signals onto output signals and to adapt to certain tasks during a
training phase. The output produced by a neural network may approximate a response surface.

Applying the metamodel NSA for the response surface of stochastic analysis, the input signals com-
prise bunch parameters s and the network output provides the associated responses in form of bunch
parameters σ. Therefore, the network first needs to learn the features of the underlying mapping of
Eq. (2). This learning is based on initially performed stochastic analyses FSA. An appropriate consti-
tution of a neural network provide a feedforward neural network and reasonable combination thereof,
e.g., committee machines, composite networks, and patchwork networks [4].

The applicability of the introduced procedure is demonstrated by means of example.
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