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ABSTRACT

A new enhanced assumend strain finite element for finite defons is introduced. The element, in the
following called Q1/EI9, is based on the split of the defotiora of an element into a homogeneous and
inhomogeneous part. Enhancement is applied only to theniogeneous part of the deformation. The
idea of splitting the deformation into a homogeneous anchhaomogeneous part was first introduced
by [1] in the context of the Cosserat point element. As maieioelements based on the enhanced
assumend strain method ([2]), the element introduced hatesiuse of the Hu-Washizu variational
principle in terms of the deformatiom, the displacement gradiedd = F — 1 and the first Piola-
Kirchhoff stress tensaP. Here, F' is the deformation gradient.

In this approach, an additive split of the displacement igraadH is used,

s
H=H+H, H:V/HdV (1)
Q

with the homogeneous part of the displacement gradienhdiyehe volume average df . The strain
energy density functio is split additively into its homogeneous and inhomogenguars

W(H) = Whom(H) + Winh(H) . (2)

For the homogeneous part of the strain energy density fumeticompressible Neo-Hooke material is
used, while the inhomogeneous part of the strain energyitgdnaction is given by a linear relation
with a constant elasticity tensor. The inhomogeneous pénmealisplacement gradient is enhanced such
that .

H=H+H, H=H(@x)-H . (3)



For the enhancement of the inhomogeneous part of the displeat gradienfd three quadratic func-
tions fulfilling the orthogonality condition imposed by thii-Washizu principle are chosen to interpo-
late the enhanced modes, as introduced in [2].

The performance of the Q1/EI9 element is studied by comgatito the standard trilinear (Q1) and
triquadratic (Q2) elements as well as the QM1/E12 elemdranfd the mixed Q1PO0 element for finite
deformations [4], which performs well for incompressiblaterials.

As shown below, the Q1/EI9 element performs very well forashegpplied to an irregularly meshed
beam, it converges faster than the Q2 element and the Qlmientéch shows severe locking behavior.

 Geometry Material

T3 Ty [ =10mm A = 600 MPa
h =2mm © = 600 MPa
oy L1 P w=1mm
hi+ - 7 - a =3mm
F Load
a ; F=6N

Degrees of freedont Q1/EI9| Q1 | Q2 | QM1/E12

664 1.0379| 0.5778| 1.0128| 1.0299
4112 1.0314| 0.7840| 1.0257| 1.0279
28576 1.0283| 0.9358| 1.0270| 1.0273
212288 1.0275| 1.0007| 1.0271| 1.0272

Irregularly meshed beam: System, load, material data afelctien of pointP

By means of pressure applied to the top of a nearly incomiptedsiock, it is shown that the Q1/EI9
element is not only locking free but also as robust as the @l&tient especially suitable for this test,
while the QM1/E12 element shows unphysical hourglassirtgter.

Finally, a surface buckling test shows that in contrastgothe QM1/E12 element the Q1/EI9 element
succeeds in detecting the correct instability points andeso

Hence, the Q1/EI9 proves to be a versatile, robust and fastezit without the drawbacks of locking
and hourglassing.
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