A brick element for finite deformations with inhomogeneous mode enhancement

* Dana S. Mueller-Hoeppe¹, Stefan Loehnert² and Peter Wriggers³

 ^{1,2,3} Institute of Mechanics and Computational Mechanics Leibniz Universität Hannover Appelstr. 9a, 30167 Hannover www.ibnm.uni-hannover.de
¹ mueller@ibnm.uni-hannover.de
² loehnert@ibnm.uni-hannover.de
³ wriggers@ibnm.uni-hannover.de

Key Words: enhanced strain, finite element technology, finite deformation, locking, hourglassing.

ABSTRACT

A new enhanced assumed strain finite element for finite deformations is introduced. The element, in the following called Q1/EI9, is based on the split of the deformation of an element into a homogeneous and inhomogeneous part. Enhancement is applied only to the inhomogeneous part of the deformation. The idea of splitting the deformation into a homogeneous and an inhomogeneous part was first introduced by [1] in the context of the Cosserat point element. As many other elements based on the enhanced assumend strain method ([2]), the element introduced here makes use of the Hu-Washizu variational principle in terms of the deformation x, the displacement gradient H = F - 1 and the first Piola-Kirchhoff stress tensor P. Here, F is the deformation gradient.

In this approach, an additive split of the displacement gradient H is used,

$$\boldsymbol{H} = \bar{\boldsymbol{H}} + \hat{\tilde{\boldsymbol{H}}}, \quad \bar{\boldsymbol{H}} = \frac{1}{V} \int_{\Omega} \boldsymbol{H} \, \mathrm{d}V$$
 (1)

with the homogeneous part of the displacement gradient given by the volume average of H. The strain energy density function W is split additively into its homogeneous and inhomogeneous part

$$W(\boldsymbol{H}) = W_{\text{hom}}(\bar{\boldsymbol{H}}) + W_{\text{inh}}(\bar{\boldsymbol{H}}) \quad . \tag{2}$$

For the homogeneous part of the strain energy density function a compressible Neo-Hooke material is used, while the inhomogeneous part of the strain energy density function is given by a linear relation with a constant elasticity tensor. The inhomogeneous part of the displacement gradient is enhanced such that

$$\dot{H} = \dot{H} + \dot{H}, \quad H = H(x) - \ddot{H}$$
 (3)

For the enhancement of the inhomogeneous part of the displacement gradient \hat{H} three quadratic functions fulfilling the orthogonality condition imposed by the Hu-Washizu principle are chosen to interpolate the enhanced modes, as introduced in [2].

The performance of the Q1/EI9 element is studied by comparing it to the standard trilinear (Q1) and triquadratic (Q2) elements as well as the QM1/E12 element [3] and the mixed Q1P0 element for finite deformations [4], which performs well for incompressible materials.

As shown below, the Q1/EI9 element performs very well for shear applied to an irregularly meshed beam, it converges faster than the Q2 element and the Q1 element, which shows severe locking behavior.

Degrees of freedom	Q1/EI9	Q1	Q2	QM1/E12
664	1.0379	0.5778	1.0128	1.0299
4112	1.0314	0.7840	1.0257	1.0279
28576	1.0283	0.9358	1.0270	1.0273
212288	1.0275	1.0007	1.0271	1.0272

Irregularly meshed beam: System, load, material data and deflection of point P

By means of pressure applied to the top of a nearly incompressible block, it is shown that the Q1/EI9 element is not only locking free but also as robust as the Q1P0 element especially suitable for this test, while the QM1/E12 element shows unphysical hourglassing behavior.

Finally, a surface buckling test shows that in contrast to e.g. the QM1/E12 element the Q1/EI9 element succeeds in detecting the correct instability points and modes.

Hence, the Q1/EI9 proves to be a versatile, robust and fast element without the drawbacks of locking and hourglassing.

REFERENCES

- [1] B. Nadler and M. Rubin. "A new 3-D finite element for nonlinear elasticity using the theory of a Cosserat point". *International Journal of Solids and Structures*, Vol. **40**, 4585–4614, 2003.
- [2] E.L. Wilson, R.L. Taylor, W.P. Doherty and J. Ghaboussi. In S.J. Fenves, N. Perrone, A.R. Robinson and W.C. Schnobrich (eds.). *Numerical and Computer Models in Structural Mechanics*, chapter Numerical and Computer Models in Structural Mechanics, Academic Press, 1973.
- [3] J.C. Simo and F. Armero. "Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes". *International Journal for Numerical Methods in Engineering*, Vol. **33**, 1413–1449, 1992.
- [4] J.C. Simo, R.L. Taylor and K.S. Pister. "Variational and projection methods for the volume constraint in finite deformation elasto-plasticity". *Computer Methods in Applied Mechanics and Engineering*, Vol. 51, 177–208, 1985.