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ABSTRACT

A new enhanced assumend strain finite element for finite deformations is introduced. The element, in the
following called Q1/EI9, is based on the split of the deformation of an element into a homogeneous and
inhomogeneous part. Enhancement is applied only to the inhomogeneous part of the deformation. The
idea of splitting the deformation into a homogeneous and an inhomogeneous part was first introduced
by [1] in the context of the Cosserat point element. As many other elements based on the enhanced
assumend strain method ([2]), the element introduced here makes use of the Hu-Washizu variational
principle in terms of the deformationx, the displacement gradientH = F − 1 and the first Piola-
Kirchhoff stress tensorP . Here,F is the deformation gradient.

In this approach, an additive split of the displacement gradient H is used,

H = H̄ + ˆ̃
H , H̄ =

1

V

∫

Ω

H dV (1)

with the homogeneous part of the displacement gradient given by the volume average ofH . The strain
energy density functionW is split additively into its homogeneous and inhomogeneouspart

W (H) = Whom(H̄) + Winh(
ˆ̃
H) . (2)

For the homogeneous part of the strain energy density function a compressible Neo-Hooke material is
used, while the inhomogeneous part of the strain energy density function is given by a linear relation
with a constant elasticity tensor. The inhomogeneous part of the displacement gradient is enhanced such
that

ˆ̃
H = H̃ + Ĥ, H̃ = H(x) − H̄ . (3)



For the enhancement of the inhomogeneous part of the displacement gradient̂H three quadratic func-
tions fulfilling the orthogonality condition imposed by theHu-Washizu principle are chosen to interpo-
late the enhanced modes, as introduced in [2].

The performance of the Q1/EI9 element is studied by comparing it to the standard trilinear (Q1) and
triquadratic (Q2) elements as well as the QM1/E12 element [3] and the mixed Q1P0 element for finite
deformations [4], which performs well for incompressible materials.

As shown below, the Q1/EI9 element performs very well for shear applied to an irregularly meshed
beam, it converges faster than the Q2 element and the Q1 element, which shows severe locking behavior.
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Degrees of freedom Q1/EI9 Q1 Q2 QM1/E12
664 1.0379 0.5778 1.0128 1.0299
4112 1.0314 0.7840 1.0257 1.0279
28576 1.0283 0.9358 1.0270 1.0273
212288 1.0275 1.0007 1.0271 1.0272

Irregularly meshed beam: System, load, material data and deflection of pointP

By means of pressure applied to the top of a nearly incompressible block, it is shown that the Q1/EI9
element is not only locking free but also as robust as the Q1P0element especially suitable for this test,
while the QM1/E12 element shows unphysical hourglassing behavior.

Finally, a surface buckling test shows that in contrast to e.g. the QM1/E12 element the Q1/EI9 element
succeeds in detecting the correct instability points and modes.

Hence, the Q1/EI9 proves to be a versatile, robust and fast element without the drawbacks of locking
and hourglassing.
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