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1 Polytechnic of Karlovac
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ABSTRACT

This paper presents a novel model oder reduction technique for a mechanical system modelled by linear
time-invariant second-order system

Mq̈(t) + Kq̇(t) + Sq(t) = B2f(t),
y(t) = C1q̇(t) + C2q(t),

(1)

where M,K, S ∈ Rn×n are large and sparse mass, damping and stiffness matrices, q(t), q̇(t), q̈(t) ∈ Rn

are displacement, velocity and acceleration vectors, f(t) ∈ Rm is vector of excitation forces, y(t) ∈
Rm is system output and C =

(
C1 C2

)
∈ Rm×n, B2 ∈ Rn×m are output and input matrices,

respectively. Typically the model (1) is obtained utilizing finite element method and is characterized
by thousands or millions of equations and variables. Simulation, optimization and real-time controller
design of such large-scale systems is unfeasible within a reasonable computation time, which motivates
model order reduction (MOR), i.e., approximation of the original (large) model with the smaller one.
After substituting xT (t) =

(
q̇T (t) qT (t)

)
, the system (1) is rewritten as a first-order generalized

state space system
Eẋ(t) = Ax(t) + Bf(t), y(t) = Cx(t), (2)

which is reduced to Ẽ ˙̃x(t) = Ãx̃(t) + B̃f(t), ỹ(t) = C̃x̃(t), where Ẽ = W T EV , Ã = W T AV ,
B̃ = W T B, C̃ = CV , and W,V ∈ R2n×r are suitably chosen projection matrices so that r << n.

In large-scale setting, this is usually accomplished by the Krylov methods (Lanczos and Arnoldi algo-
rithms), where the projection matrices and/or the reduced system matrices are determined iteratively.
In such case, the so-called moments (transfer function and possibly some of its derivatives) of the redu-
ced and the original model match at a certain number of points in complex plane, which are refered to
as the interpolation points. Although numerically very efficient, the Krylov mehods have a drawback
that there are no a priori guarantees that the reduced model will perserve stability and passivity of the
original model. This has further motivated a research in passivity-preserving MOR.



This paper proposes a novel construction of the projection matrices for model ored reduction. As a first
step, the system (2) is argumented with an artificial feed-through term so that the second equation in
(2) becomes y(t) = Cx(t) + Df(t), where D ∈ Rm×m. The projection matrices are then derived for
the altered system and applied in MOR of the original system. By varying the matrix D we are able
to influence the interpolation points, and therefore the cresponding projection matrices. We exploit this
aditional freedom to obtain optimal appriximation of the original system. Moreover, the proposed MOR
technique is guaranteed to preserve passivity of the original system. In some more detail, the proposed
MOR technique is described as follows.

Our choice of optimal set of interpolation points is strongly motivated by Gugercin’s result [1] for the
H2 norm of the error system in the Lanczos procedure. This result implies that, in order to obtain an
optimal reduced model in H2 norm, one should choose interpolation points as mirror images−λ∗ of the
original system’s poles λ accross the imaginary axis. To render the reduced system stable and passive,
the projection matrices are determined as in [2]. The key for preserving passivity, as observed in [3],
is choosing spectral zeros of transfer function G(s) of the original system as interpolation points. In
[2] this is accomplished without explicit computation of spectral zeros, solving generalized partial real
Schur decomposition AQ = EQR where

A =

 A 0 B
0 −AT −CT

C BT D + DT

 , E =

 E 0 0
0 E 0
0 0 0

 . (3)

In such case, spectral zeros are equal to the eigenvalues of real quasi-upper triangular matrix R, i.e., the
generalized eigenvalues of the pair (A, E). Columns of Q, where QT Q = Ir, span an invariant subspace
corresponding to the selected set of r spectral zeros. Finally, after some transformations, the projection
matrices W,V are obtained from Q. By the appropriate choice of D in (3), the spectral zeros in the
right-half of the complex plane approach the generalized eigenvalues of the pair (−AT , E), which are
mirror images of the poles of the original system (2). Taking into account the passivity constraint, the
reduced model is thus optimal in H2 norm.

To evaluate its accuracy and efficiency, the proposed approach has been applied on the finite element
model of a simply-supported thin square plate with four inputs and four outputs. After selecting the ap-
propriate feed-through matrix D, generalized partial Schur decomposition (3) has been performed using
ARPACK [4], followed by calculation of the projection matrices and the reduced model. Frequency-
domain response of such reduced model has been compared to the response of the original system and
to the response of another reduced model obtained via balanced truncation method. The obtained results
cearly illustrate efficiency of the proposed MOR technique.
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