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ABSTRACT

In many brittle materials around the crack front of a macrocrack, microcracks develop which have a sig-
nificant influence on the propagation behavior of the macrocrack. Those microcracks either cause crack
shielding or crack amplification. Since they are orders of magnitude smaller than the whole structure
under consideration the effect of the microcracks cannot becaptured accurately in a single scale com-
putational analysis. A multiscale approach is required. However, many commonly known multiscale
strategies like the FE2 method or methods based on homogenization in general fail when localization
phenomena such as softening damage, cracks or shear bands occur.

In this contribution we present a computationally efficientmultiscale finite element method for the sim-
ulation of fracture processes in two and three dimensions [1]. The method is based on the decomposition
of the displacements into fine scaleu1 and coarse scaleu0 parts withu1 = u0 + ū1 andū1 being the
fluctuations of the microstructural displacements due to e.g. microcracks. Microcracks are considered
explicitly only on the fine scale level whereas macrocracks are considered on the coarse scale as well
as the fine scale level. The extended finite element method (XFEM) [2] in combination with the level
set method is used to take into account macrocracks and microcracks accurately. Instead of discretizing
ū1 on the fine scale level, we discretizeu0 on the coarse scale andu1 on the fine scale directly using
the XFEM approximation
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whereu0
I andu1

I are the coarse and fine scale standard nodal degrees of freedom anda0
jI anda1

jI are
the coarse and fine scale nodal enriched degrees of freedom corresponding to the enrichment functions
fj, respectively. The enrichment functions are chosen in two dimensions according to [2] and in three
dimensions according to [3]. The coarse and fine scale test functionsη0

h andη1
h are set up in the same



way as the displacements. We assume the material to be isotropic linear elastic. Then, on the fine scale
the weak form of equilibrium reads

∫

Ω1

σ(u0 + ū1) : gradsym(η1) dΩ =

∫

Ω1

f · η1 dΩ . (2)

Since we prescribe the displacements resulting from the coarse scale computation as boundary con-
ditions on the entire boundary of the fine scale domain, in equation (2) tractions are not considered.
For the coarse scale problem we project the stresses obtained from the fine scale calculation onto the
respective coarse scale elements. The corresponding weak form for the coarse scale problem then reads

∫

Ω0

σ(u0 + ū1) : gradsym(η0) dΩ =

∫

Ω0

f · η0 dΩ +

∫

∂Ω0

t · η0 d∂Ω . (3)

The displacement boundary conditions on the fine scale domain boundary are determined by a least
square method projecting the displacements from the coarsescale mesh to the nodal degrees of freedom
of all boundary nodes of the fine scale domain.

∫

Ω̄1

(

u1
h − u0

h

)

· η1
h dΩ = 0 . (4)

Due to the nature of the enrichment functions, in order to avoid linear dependence, it is necessary to
carry out the least square projection (4) over a small strip of fine scale elements along the boundary of
the fine scale domain instead of over the surface of the fine scale domain.

In a variety of examples we show that this multiscale projection method works well in two and three
dimensions. We show that we can capture the effect of crack shielding and amplification accurately (fig.
1), and we can apply the method to random distributions of microcracks and macrocracks (fig. 2).

Figure 1: 2D multiscale projection Figure 2: 3D multiple crack problem
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