SENSITIVITY ANALYSIS OF MULTIPARAMETER MODEL SYSTEMS IN CIVIL ENGINEERING

*Z. Kala¹ and L. Puklický²

¹ Brno University of Technology	² Brno University of Technology
Faculty of Civil Engineering	Faculty of Civil Engineering
Department of Structural Mechanics	Department of Structural Mechanics
Veveří Str.95	Veveří Str.95
Zip Code: 602 00	Zip Code: 602 00
Brno, CZECH REPUBLIC	Brno, CZECH REPUBLIC
E-mail: ka1a.z@fce.vutbr.cz	E-mail: 1.puk1icky@centrum.cz

Key Words: Sensitivity, Frame, Imperfections, Steel, Resistance, Interaction effects.

ABSTRACT

The objective of the present paper is the sensitivity analysis of the steel plane frame load-carrying capacity. Steel plane frame is a system which contains three members: two columns and cross beam, see Fig. 1. Sensitivity analysis is used to analyze how sensitive a system resistance is with respect to change of initial imperfections.

Statistical information on initial imperfections of cross-section geometry and material characteristic were published in [4]. Input quantities X_i of left column are yield strength f_{y1} , cross-sectional height h_1 , cross-sectional width b_1 , web thickness t_{w1} , flange thickness t_{f1} and Young modulus E_1 . Input quantities of right column are f_{y2} , h_2 , b_2 , t_{w2} , t_{f2} , E_2 . Input quantities of cross beam are f_{y0} , h_0 , b_0 , t_{w0} , t_{f0} , E_0 . Statistical characteristics were considered as histograms according to the results of experimental research [4]. The system imperfection e_0 considered according to the first buckling mode was the last random input characteristic, see Fig. 3. The Gauss density function with mean value $\mu_{e0}=0$ mm, and standard deviation, $\sigma_{e0}=5$ mm were assumed for system imperfection e_0 .

The load-carrying capacity of variant 2 was solved by the nonlinear Euler incremental method and combined with the Newton-Raphson method [3]. The frame geometry was meshed by beam elements with initial curvature in form of a parabola of the 3rd degree.

The Sobol's variance decomposition is used for investigation of first-order effects and second-order effects due to interactions [2, 1]. In our study, the sensitivity analysis of load-carrying capacity Y (output quantity) to statistically independent input imperfections X_i was evaluated according to:

$$S_{i} = \frac{V(E(Y|X_{i}))}{V(Y)}$$
(1)
$$S_{ij} = \frac{V(E(Y|X_{i},X_{j}))}{V(Y)} - S_{i} - S_{j}$$
(2)

The change of output load-carrying capacity *Y* is characterised by variance V(*Y*). The sensitivity indices *Si* were evaluated utilizing the Monte Carlo. The conditional random arithmetical mean $E(Y|X_i)$ and the variance $V(E(Y|X_i))$ were evaluated for *N*=50000 simulation runs.

Fig. 4: Sensitivity indices of Variant 1

Fig. 5: Sensitivity indices of Variant 2

The first order (1) and second order (2) sensitivity indices of initial imperfection are presented in Fig. 4 and Fig. 5. The yield strength values f_{y1} and f_{y2} are dominant for the Variant 1. The sensitivity analyses results depicted in Fig. 5 clearly illustrate that the dominant variable for the monitored output is the system imperfection e_0 .

The article was elaborated within the framework of projects GAČR 103/07/1067, KJB201720602 AVČR and GAČR 103/08/0275.

REFERENCES

- [1] SALTELLI, A., RATTO, M., ANDRESS, T., et al, *Global Sensitivity Analysis Guiding the Worth of Scientific Models*, New York: John Wiley and Sons, 2007.
- [2] SOBOL', I., "Sensitivity Estimates for Nonlinear Mathematical Models", *Matematicheskoe Modelirovanie 2*, pp.112–118, 1990. (in Russian)
- [3] KALA, Z. "Sensitivity Analysis of the Stability Problems of Thin–walled Structures", *Journal of Constructional Steel Research 61* (2005), pp.415–422.
- [4] MELCHER, J., KALA, Z., HOLICKÝ, M., FAJKUS, M., ROZLÍVKA, L. "Design Characteristics of Structural Steels Based on Statistical Analysis of Metallurgical Products", *Journal of Constructional Steel Research 60* (2004), pp.795–808.