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ABSTRACT

The main advantage of the meshless methods of partial differential equations is that they require neither
domain nor boundary discretization such as a (Cartesian or curvilinear) grid or finite element mesh. It
is sufficient to use a set of boundary points only (and, sometimes, a set of inner points) which, however,
do not need to have any structure. The price of this approach that in the vast majority of such methods
lead to discrete linear systems with dense, highly ill-conditioned matrices, which can cause serious
computational difficulties. For instance, the popular method of particular solutions splits the original
problem into two subproblems: to find a particular solution taking into account no boundary conditions
and to solve a homogeneous problem with modified boundary conditions. The first task can be treated
by e.g. radial basis function (RBF) approach which is based on the inner interpolation points, while the
second task can be solved by using a boundary technique e. g. the boundary knot method [1] or the
method of fundamental solutions [2]. However, the above subproblems exhibit the same computational
disadvantages as the original problem. Moreover, in case of problems which are nonlinear and/or with
variable coefficients, both the particular solution and the fundamental solution can hardly be obtained.

The use of the direct multi-elliptic interpolation [3] is a possible way to avoid the above mentioned
computational difficulties. Here the interpolation function is defined as a solution of a higher order
auxiliary partial differential equation (e.g. the biharmonic equation, the modified bi-Helmholtz equation
etc.) supplied with interpolation conditions as special (pointwise) boundary conditions. As shown in [3],
the interpolation does not essentially differ from an RBF-like interpolation based on the fundamental
solution of the applied higher order partial differential operator. However, from computational point of
view, it is much cheaper when using quadtrees and multi-level methods. Moreover, the use of dense
and ill-conditioned matrices is avoided. The homogeneous subproblem can be solved in a similar way,
using a regularized version of the method of fundamental solutions based on a Laplace-Helmholtz
interpolation with the fourth-order operator ∆(∆ − c2I) with a carefully chosen scaling parameter c
as proposed in [4] (here I denotes the identity operator). However, the optimal value of the scaling
parameter depends on the local density of the interpolation points, which can vary from location to
location. Moreover, the improper definition of c causes numerical singularities on the boundary (if c
is too high) or poor approximation of the homogeneous partial differential equation (if c is too small).
Both cases result in an increase of the errors.



In our talk, we simplify the approach introduced in [5]. The particular solution is obtained by a direct,
quadtree-based multi-level solution of the inhomogeneous problem. The construction of the homoge-
neous solution is based on a biharmonic interpolation which is performed in a narrow vicinity of the
boundary only. This neighborhood is automatically determined by the (unstructured) boundary points
using the same quadtree cell generation as in the previous step. In fact, the approach does not require to
split the solution of the original problem into finding a particular solution and solving a homogeneous
subproblem. The proposed method contains no scaling parameter to be optimized and generates no
boundary singularities. The method makes it possible to avoid the use of ill-conditioned matrices. Error
estimations will be derived and numerical examples are also presented.
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