A POLYNOMIAL MULTIPARAMETER EIGENVALUE PROBLEM ARISING FROM DELAY DIFFERENTIAL EQUATIONS

* Michiel E. Hochstenbach¹, Elias Jarlebring²

1	AG Numerik
¹ Department of Mathemat-	Institut Computational Math-
ics and Computing Science	ematics
TU Eindhoven	
PO Pox 512	TU Braunschweig
	Pockelsstr. 14
5600 MB Eindhoven	38106 Braunschweig
The Netherlands	www.mublic.tu
www.win tuo nl/a boohston/	www-public.tu-
www.wiii.tuc.iii/~lioclisteli/	bs.de/~jarlebri/

Key Words: *Delay differential equation, polynomial multiparameter eigenvalue problem, multiparameter eigenvalue problem, quadratic eigenvalue problem.*

ABSTRACT

We study the critical delays for time-delay systems (differential equations with a delay): the delays for which the system has a purely imaginary eigenvalue. We show that this may lead to a new type of eigenvalue problem: the polynomial multiparameter eigenvalue problem. In our case, we get a certain quadratic two-parameter eigenvalue problem, which combines properties of the quadratic eigenvalue problem and the two-parameter eigenvalue problem.

We present a subspace approach to numerically approximate critical delays for large matrices. One of the ingredients of the method is an inexact accelerated Newton technique.