FINITE ELEMENT METHOD APPPLIED TO AEROSTATIC BEARINGS FOR INVESTIGATION OF THE DISCHARGE COEFFICIENT EFFECTS ON THE OPERATING PARAMETERS

*Marcos Theiss Neves¹, Vilmar Arthur Schwarz² and Genésio José Menon³

¹ UNIFEI	² UNIFEI	³ UNIFEI
Av. BPS, Itajubá, MG, Brazil	Av. BPS, Itajubá, MG, Brazil	Av. BPS, Itajubá, MG, Brazil
theiss@unifei.edu.br	vilmar@unifei.edu.br	genesio@unifei.edu.br
www.unifei.edu.br	www.unifei.edu.br	www.unifei.edu.br

Key Words: Aerostatic, Journal Bearing, Discharge Coefficient, Load Capacity.

ABSTRACT

Aerostatic journal bearings operate mainly at either zero or low speeds. Thus, externally pressurized air must be supplied to the bearing clearance through feeding orifices, in order to generate a load carrying capacity. The discharge coefficient C_D , which is the correction factor employed to obtain the real air mass flow, is usually assumed constant $C_{\rm p} = 0.8$ for design calculations, either for sonic ("choked") and subsonic flow conditions. This approach is adopted by Su and Li [1], Sorin et al. [2], Renn and Hsio [3] and Cheng-Ying [4]. However, Belforte et al. [5] from experiments on an aerostatic thrust bearing developed an empirical formula for C_D as a function of Reynolds number. Powell [6], also observed that C_D is variable, as a function of the pressure ratio p_d/p_s , i.e., $C_D = f(p_d/p_s)$, where p_s is the gas supply pressure and p_d is the discharge pressure at the feeding orifice throat. The present study is a theoretical investigation of the discharge coefficient influence on the performance of aerostatic journal bearings under two approaches for the C_D values, i.e., $C_D = 0.8$ and $C_D = f(p_d/p_s)$. The Reynolds equation for compressible fluids is solved by the finite element method with isoparametric triangular linear elements. The bearing main dimensions are: L = 50.80 mm, D = 50.80 mm, $C = 19.05 \mu m$. Two rows of eight feeding orifices, located at $l_2 = 12.70 \text{ mm}$ from the bearing ends, were employed. Orifice and pocket diameters are $d_o = 0.150 \, mm$ and $d_p = 0.750 \, mm$, respectively. Air absolute supply pressure is $p_s = 0.51708 MPa$. The calculated bearing gauge pressure ratio $k_{go} = (p_d - p_a)/(p_s - p_a)$, for $\varepsilon = 0$, was found to be 0.453 for $C_D = 0.8$ and 0.464 for $C_D = f(p_d/p_s)$, giving a 2.43% relative difference. A sample of results, for $\varepsilon = 0.5$, for the two C_D cases are given in Tables 1 and 2. As can be seen from Table 1, the total air mass flow differs by only 0.28% relative to the case of $C_D = 0.8$, although, at the minimum film thickness (orifice 5) the difference is about -12%. For the orifices 4 and 6, due to a C_D value reduction, the difference is -4.45%. On the other hand, for the orifices 1, 2, 8, 3 and 7, the difference is positive since C_D is slightly higher than $C_D = 0.8$. From Table 2, the bearing load carrying capacity is about 6.6% lower for the case of $C_D = f(p_d/p_s)$, although the bearing total mass flow difference is only 0.28%.

Orifices of	$C_D = \text{constant}$		p_d	$C_D = f\left(p_d / p_s\right)$		p_d	Difference
Row 1	Flow g/s	C_{D}	p_s	Flow g/s	C _D	p_s	(%)
Orifice 1	0.016698	0.8	0.378	0.017024	0.816	0.381	1.95
Orifices 2 and 8	0.016577	0.8	0.412	0.016993	0.820	0.416	2.50
Orifices 3 and 7	0.016054	0.8	0.545	0.016620	0.829	0.549	3.50
Orifices 4 and 6	0.012093	0.8	0.799	0.011555	0.744	0.783	-4.45
Orifice 5	0.007499	0.8	0.922	0.006601	0.578	0.877	-11.97
Total flow	0.113645			0.113962			0.28

Table 1 – Air mass flow for the two C_D approaches, for $\varepsilon = 0.5$.

Table 2 – Bearing characteristics for the two C_D approaches, for $\varepsilon = 0.5$.

					Difference
Operating parameters	Depending parameters $C_D = 0.8$ $C_D = f(f)$		$C_D = f\left(p_d\right)$	(p_s)	(%)
Load carrying capacity	320.99	N	299.65	N	-6.65
Dimensionless load $W/(p_s LD)$	0.299		0.279		-6.65
Bearing total air mass flow	0.227290	g/s	0.227924	g/s	0.28

REFERENCES

- [1] Jerry C. T. Su and K. N. Lie, 2003, "Rotation effects on hybrid air journal bearings", *Tribology International*, 36, pp. 717-726.
- [2] Sorin Cioc, Florin Dimofte, Theo G. Keith, Jr. and David P. Fleming, "Computation of pressurized gas bearing using the CE/SE method", *Tribology Transactions*, 46, 1, pp. 128-133.
- [3] Jyh-Chyang Renn and Chih-Hung Hsiao, 2004, "Experimental and CFD study on the mass flow-rate characteristic of gas through orifice-type restrictor in aerostatic bearings', *Tribology International*, 37, pp. 309-315.
- [4] Lo, Cheng-Ying, Wang, Cheng-Chi and Lee, Yu-Han, 2005, "Performance analysis of high-speed aerostatic bearings", *Tribology International*, 38, pp. 5-14.
- [5] Belfort, G., Raparelli, T., Viktorov, V. and Trivella, A., 2007, "Discharge coefficients of orifice-type restrictor for aerostatic bearings", *Tribology International*, 40, pp. 512-521.
- [6] Powell, J. W., 1970, "*Design of Aerostatic Bearing*", London, The Machinery Publishing Co. Ltd., 280 p.

The authors greatly acknowledge the support given by FAPEMIG and CNPq.