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ABSTRACT

Drawing on ideas from earlier work on the nonsymmetric D@rfolation for elliptic problems (Girault
et al. [5], Larson and Niklasson [4], Brezzi and Marini [1]uBnan and Stamm recently showed that
a symmetric DG method using a piecewise affine approximagmace, enriched by nonconforming
quadratic bubbles, is stable and optimally convergentawitinterior penalty term [2,3]. This unstabi-
lized approach has some interesting properties: the methmys enhanced local mass conservation
unperturbed by any numerical parameters and the systemjdmiadonsistent allowing for optimal
convergence of the error in the?—norm. On the other hand, the system resulting from the [sexgho
discretisation is not positive definite, leading to a mormplex analysis. Indeed standard coercivity
arguments fail and an argument involving an inf-sup coaditinust be applied also for the classical
Poisson problem.

In this talk we will show how the proposed method can be exddrid more complex problems in fluid
mechanics with special focus on the heat equation and Stoiadem.

For the parabolic model problem we show that in spite of ties@nce of negative eigenvalues a standard
backward Euler time discretization scheme leads to a statnl@ptimally convergent method. Stability
holds under a non restrictive inverse parabolic CFL—caminamely thah? /5t is small enough where
we denote by: the spatial and byt the temporal discretization parameter. We will also disdhs case

of other A-stable time-discretization schemes.

For Stokes’ problem on the other hand we investigate whaispre spaces may be used in order for
the problem to be uniformly wellposed. We propose to combirebubble enriched space for the
velocities with the space of discontinuous piecewise @misfunctions or the space of continuous
affine approximations for the pressure. We will discuss hogsé choices of pressure spaces relates
to classical methods indicating in each case how the infesunglition may be proved. Moreover we



discuss the approximation properties of both variants awtew the conservation properties of the
resulting method.

Some numerical examples illustrating the theory will beegiYor the two model-problems discussed.
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