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ABSTRACT

The understanding and modelling of elastodynamic phenomena are of great importance in engineering
applications. Especially, the simulation of dynamic effects in half-spaces are of interest, e.g., in earth-
quake engineering. For the calculations in such unbounded domains the Boundary Element Method
(BEM) is the preferred methodology. For elastodynamics this method has been introduced by Cruse
and Rizzo [3, 2].

This numerical technique has reached meanwhile a state of maturity also for dynamic problems. For
time dependent problems a step forward has been done due to the work of Lubich [5, 6] and Schanz
[8]. However, a dynamic calculation is much more time and storage consuming compared to static
calculations and for the classical BEM the matrices are also fully populated. Hence, the numerical as
well the storage complexity for establishing the system matrices is asymptotically of quadratic order
with respect to the unknowns. This restricts a solvable problem to a rather small or probably medium
size.

To overcome this restriction several methodologies have been developed to reduce the memory require-
ment as well as the calculation time [7]. The main idea is an approximation of the system matrices by
compression techniques, i.e., to employ data sparse techniques.

Several approaches, such as the fast multipole method or the panel clustering, gain their efficiency
basically from an analytic approximation of the non-local kernel function. This can be achieved by the
decomposition of the kernel function

K(x− y) ≈ K̄(x,y) =
r∑

i=1

pi(x)qi(y) ,

into a product of functions, one dependent on the field point x and one dependent on the load point y.
Thus, the dependency on the distance between the two points is approximated. The main difficulty is to
find a suitable series expansion for the explicit separation of the kernel function. This is not yet solved
for elastodynamics.

The present work focuses on a purely algebraic approach, i.e., the Adaptive Cross Approximation
(ACA) as proposed in [1] is applied. In contrast to the analytic approaches as sketched above, this
technique is not explicitly dealing with the kernel functions. Only the geometric information of the



problem under consideration is necessary. The main idea is that the product of r pivot vector pairs uv>

build up a low rank matrix Ã with rank r

Ã =
r∑

i=0

uiv
>
i .

Iteratively this product is upgraded by an additional pivot cross, until in the rth iteration step a defined
accuracy of the low rank matrix is reached, i.e., until

‖A− Ã‖F ≤ ε‖A‖F

holds. Hence, the advantage of the ACA is based on the fact that only a few of the original matrix
entries have to be generated and stored. The residual entries can be neglected. This represents the
physical effect that the influence of two points with a large distance is much smaller than that of two
neighbouring points.

In the numerical procedure, first, a so calledH-matrix [4] has to be set up. Therefore, the original system
matrix is subdivided into admissible near- and far-field blocks by means of a geometrical clustering.
Then each far-field block can be represented by the above mentioned adaptive low-rank approximation.

As will be shown numerically, the presented approach is suitable for the efficient simulation of elasto-
dynamic problems.
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