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ABSTRACT

For a physical system described by a motion in an energy landscape under holonomic constraints,
theΓ-convergence of variational integrators to the corresponding continuum action functional and the
convergence properties of solutions of the discrete Euler-Lagrange equations to stationary points of
the continuum problem are studied [1]. This extends the results in [2] to constrained systems. The
convergence result is illustrated with an example of flexible multibody dynamics.

Consider an n-dimensional mechanical system with the time-dependent configuration vectorq(t) ∈ Q
and velocity vectorq̇(t) ∈ Tq(t)Q, wheret ∈ [t0, tN ] ⊂ R denotes the time andN ∈ N. Let the
configuration be constrained by the functiong(q) = 0 ∈ R

m that restricts possible configurations to
the constraint manifoldC = {q ∈ Q|g(q) = 0}. In the temporal discrete setting, using a constant time-
steph ∈ R, a pathq : [t0, tN ] → Q is replaced by a discrete pathqd : {t0, t0+h, , t0+Nh = tN} → Q,
whereqn = qd(t0 + nh) is viewed as an approximation toq(t0 + nh).

Let the action integral of the continuous LagrangianL : Tq(t)Q → R over one time interval be ap-
proximated by the discrete LagrangianLd : Q × Q → R as it is standard in variational integrators
[3]. Among various possible choices to approximate this integral, the midpoint rule is in use for the

Lagrangian, i.e.Ld(qn,qn+1) = hL
(

qn+1+qn

2 ,
qn+1−qn

h

)

. Let LC

d = Ld|C×C
: C × C → R denote the

constrained discrete Lagrangian which restrictsLd to the constraint manifold. Then stationarity of the
constrained discrete action

δSC
d = δ

N−1
∑

n=0

LC
d(qn,qn+1) = 0 (1)

yields the constrained discrete Euler-Lagrange equations. The main results are the following two The-
orems.

Theorem 1: Let V ∈ C(Q, R) with |V (q)| ≤ c(1 + |q|2). ThenSC
d (·, (t0, tN )) Γ− converges in

L2((t0, tN ),Q) (on all open bounded time intervals(t0, tN )) and

Γ − lim
h→0

SC
d (·, (t0, tN )) = SC(·, (t0, tN )) (2)



This states theΓ−convergence of the discrete action functional to the continuous one. As a second step,
the convergence of stationary points of the discrete actions is considered.

Theorem 2:Let V ∈ C(Q, R) with |V (q)| ≤ c(1 + |q|2) and letqd be a sequence of stationary points
for SC

d such that|qd(t0)| andSC
d (qd, (t0, tN )) are bounded uniformly. Then there exists a subsequence

qd → q in L
p
loc(R,Q) for all 1 ≤ p < ∞ andq is a stationary point ofSC . Furthermore,̇qd → q̇ in

L
p
loc(R,Q) for all 1 ≤ p < ∞.

The statements of Theorem 2 will be illustrated by means of a numerical example. It deals with a swing
consisting of an elastic beam hinged at its ends to rigid bodies by revolute joints. The rigid bodies
are fixed in space by spherical joints. An additional point mass is concentrated at the beams mid-
point. The loading is a triangular pulse in longitudinal direction which is applied at the midspan mass.
The present formulation of multibody dynamics relies on redundant coordinates subject to holonomic
constraints. The constraints are treated using the discrete null space method which has been introduced
in the framework of energy-momentum schemes in [4]. Figure 1illustrates the motion and deformation
of the swing, while the second order convergence of configurations and velocities can be observed from
Figure 2.

Figure 1: Three-bar swing: snapshots of the motion.
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Figure 2: Three-bar swing: convergence of configuration andvelocity to reference solution forh ∈
[10−2 . . . , 5 · 10−5].
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