Mathematical Modelling and Numerical Simulation of Blood Flow in Compliant Vessels

* Mária Lukáčová-Medviďová¹, Anna Zaušková¹,²

¹ Institute of Numerical Simulation, Hamburg University of Technology
Schwarzenbergstrasse 95, 21073 Hamburg, Germany
lukacova@tu-harburg.de
www.tu-harburg.de/mat/hp/lukacova

² Department of Mathematical Analysis and Numerical Mathematics, Comenius University Bratislava
Mlynská dolina 84248, Bratislava, Slovak Republic
zauskova@tu-harburg.de
http://hore.dnom.fmph.uniba.sk/~zauskova

Key Words: non-Newtonian fluids, fluid-structure interaction, shear-thinning fluids, hemodynamical wall parameters, existence and uniqueness of weak solution

ABSTRACT

Blood is a complex, non-Newtonian fluid-solid mixture which consists of deformable cells, e.g. red blood cells (RBCs) that are suspended in an essentially Newtonian plasma. Blood’s microstructure, in particular the RBCs, imply the non-Newtonian behaviour. The blood exhibits the shear-thinning property, i.e. breakup of RBCs at low shear, viscoelasticity-due to the cell deformation and cell aggregation and shear anisotropy-due to the alignment of cells with the flow direction [4,5,6]. In the present work we use the macroscopic model that reflects the shear-thinning blood property. In particular we work with the power-law type model of the Carreau and the model with Yeleswerapu viscosity, see [3,5,6].

Our aim is to study the blood flow in elastic vessels. In practice the deformation of elastic artery wall is not negligible and can lead to localized reversal flow which implies a formation of atherosclerotic plaques and stenosis - inner lumen constriction of the vessels. The mathematical model is based on the fluid-structure interaction between the shear-thinning fluid and elastic vessel. The deformation of the blood vessels is modelled by the generalized string equation which yields a second order differential equation for the wall displacement \( \eta \). The interaction between fluid and structure is twofold. First, the structure enforces a non-homogeneous Dirichlet-type boundary condition on the vessel wall \( u(x, y, t) = \eta_t(x_1, t), \quad (x, y) \in \Gamma^{wall}(t) \). Moreover, the fluid enforces the movement of the vessels and thus we have in the string equation the forcing term induced by the fluid stress tensor. The coupled problem is solved iteratively by means of the strong coupling between the fluid and structure, see, e.g., [3,7] for more details.

We present our recent theoretical results of existence and uniqueness of the weak solution for shear-dependent flows in compliant vessels [2]. The existence result for Navier-Stokes equation in a time dependent domain obtained in [1] have been generalized for the shear-dependent fluids. Having in the non-Newtonian case an additional non-linear viscous term, new techniques have been used to obtain
necessary estimates. Finally we present results of numerical simulations for blood flow in stenotic vessels, see Figure 1. Study of hemodynamical wall parameters confirms the importance of using the non-Newtonian rheology in order to get reliable predictions of arterosclerotic plugs.

![Figure 1: Velocity field in two time instances with the Carreau non-Newtonian model for viscosity, \(RE = 60\), \(t = 0.36 \text{ s}\), \(t = 0.96 \text{ s}\).](image)

REFERENCES


