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ABSTRACT

Macroscopic properties of materials with a heterogeneous microstructure are essentially determined by
the constituents and their interaction on the lower scale. In the numerical simulations of these materials,
two possibilities can be distinguished. One possibility isa phenomenological approach, where based
on simulations on the fine scale or based on experimental results the parameters of a macroscopic
material model are determined. This approach requires a suiteable material model, which has to be
chosen from experience. The second possibility is the simulation on the fine scale, but a full model
on the fine scale exceeds the computational power of current computers. In order to overcome this
problem, multiscale approaches can be used, where only distinct regions are modeled on the fine scale,
whereas most of the structure is modeled on the coarse scale.Although this approach can considerably
reduce the computational effort, it requires a suitable coupling between the scales and certain transition
conditions to decide at what point a transfer from the coarseto the fine scale is required. Especially in
situations where the nonlinearity does not localize in certain regions this approach is as computational
expensive as the full fine scale model.

In this paper, the derivation of a coarse scale material model based on neural networks is shown [1]. For
the training of the neural network, representative numerical simulations on the fine scale are performed.
This approach has the advantage that no a priori knowledge ofthe coarse scale material model is re-
quired. The complexity of the model is not limited, but iteratively determined in the training process.

In [2], neural networks were used as material models. In mostmethods using neural networks for the
formulation of the material behaviour, the strains of an intergration point are the input of the neural
network, whereas the current stress is the output. In order to model complex cycling loading additional
input parameters are used as e.g. the stresses of previous equilibrium states and the strain differences to
these states. But this approach limits the generalization capacity of the model, since the range of strain
differences in the macroscale simulation must be covered bythe fine scale simulations used for training.

In this paper, a different approach is proposed. The input parameters are the current strain and a history
strain, which is in one dimension related to the maximum strain ever reached in the loading regime. In
order to distinguish between loading and unloading, similar to a yield function in plasticity theory, a
loading function approximated by a support vector machine is used. The mesoscale simulations used to
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Figure 1: a)Generation of training samples and b)training samples for the loading/unloading network
for a 1D tension test

generate the training data for the loading/unloading network are performed with different ratios between
the strain components. These strains corresponding to the applied loads are incrementally increased up
to a certain maximum history strain. From this history strain, additional strain increments are applied
in radial directions as illustrated in Fig. 1a) in the case oftwo strain components. The decision, whether
loading or unloading is observed, is based on the dissipatedinelastic energy, where loading is interpreted
as +1 and unloading as -1. The corresponding training data for a one dimensional tension test is shown
in Fig. 1b). It is to be noted, that in the elastic regime, where the dissipated inelastic energy vanishes,
a different criterion using the length of the strain tensor is used. Apart from the loading/unloading
network, a second neural network modeled with a multilayer perceptron is used to approximate the
stress as a function of the total strain and the total historystrain. Consequently, the stress calculation
is a two stage procedure. First, using the total strain and the history strain of the previous equilibrium
iteration, a new history strain is calculated using the loading/unloading network. This procedure is
similar to the return mapping algorithm in a plasticity formulation. In the second stage, using the total
strain and the calculated history strain, the stress is extracted from the stress/strain network.

The procedure is illustrated using a 1D tensile test of concrete. The corresponding mesomodel is based
on a combination of damage and plasticity (Drucker-Prager and Rankine) and shows softening be-
haviour. For models including softening, the size of the mesomodel is an important influencing factor,
since a representative volume element (RVE) does no longer exist. Consequently, the dimension of
the mesomodel is included as additional input parameter in the loading/unloading and the stress/strain
network.

REFERENCES

[1] J.F. Unger and C. Könke.Neural Networks as Material Models within a Multiscale Ap-
proach, Proceedings of the Ninth International Conference on the Application of Artificial
Intelligence to Civil, Structural and Environmental Engineering, Eds. Barry H.V. Topping,
2007

[2] J. Ghaboussi, J.H. Garret and X. Wu. “Material modeling with neural networks”.Proceed-
ings of the International conference on numerical methods in engineering: theory and ap-
plications, Swansea, UK, 701–717, 1990.


