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ABSTRACT

Macroscopic properties of materials with a heterogeneduasostiructure are essentially determined by
the constituents and their interaction on the lower scalthé numerical simulations of these materials,
two possibilities can be distinguished. One possibility ishenomenological approach, where based
on simulations on the fine scale or based on experimentaltsethe parameters of a macroscopic
material model are determined. This approach requirestaatlé material model, which has to be
chosen from experience. The second possibility is the sitioul on the fine scale, but a full model
on the fine scale exceeds the computational power of cur@npuaters. In order to overcome this
problem, multiscale approaches can be used, where onigalistgions are modeled on the fine scale,
whereas most of the structure is modeled on the coarse #dtideugh this approach can considerably
reduce the computational effort, it requires a suitablgting between the scales and certain transition
conditions to decide at what point a transfer from the coarshe fine scale is required. Especially in
situations where the nonlinearity does not localize inatertegions this approach is as computational
expensive as the full fine scale model.

In this paper, the derivation of a coarse scale material iMmdeed on neural networks is shown [1]. For
the training of the neural network, representative nuna¢sitnulations on the fine scale are performed.
This approach has the advantage that no a priori knowledgigeofoarse scale material model is re-
quired. The complexity of the model is not limited, but itéraly determined in the training process.

In [2], neural networks were used as material models. In mehods using neural networks for the
formulation of the material behaviour, the strains of arigtation point are the input of the neural
network, whereas the current stress is the output. In oocderodel complex cycling loading additional

input parameters are used as e.g. the stresses of previalisragn states and the strain differences to
these states. But this approach limits the generalizatapacity of the model, since the range of strain
differences in the macroscale simulation must be coverdbdimne scale simulations used for training.

In this paper, a different approach is proposed. The inptpaters are the current strain and a history
strain, which is in one dimension related to the maximumrsieser reached in the loading regime. In
order to distinguish between loading and unloading, sintdaa yield function in plasticity theory, a
loading function approximated by a support vector mactsnesed. The mesoscale simulations used to
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Figure 1: a)Generation of training samples and b)trainemges for the loading/unloading network
for a 1D tension test

generate the training data for the loading/unloading negtwee performed with different ratios between
the strain components. These strains corresponding t@fiied loads are incrementally increased up
to a certain maximum history strain. From this history straidditional strain increments are applied
in radial directions as illustrated in Fig. 1a) in the casenaf strain components. The decision, whether
loading or unloading is observed, is based on the dissipagdastic energy, where loading is interpreted
as +1 and unloading as -1. The corresponding training datadoe dimensional tension test is shown
in Fig. 1b). It is to be noted, that in the elastic regime, vehiire dissipated inelastic energy vanishes,
a different criterion using the length of the strain tensoused. Apart from the loading/unloading
network, a second neural network modeled with a multilayenceptron is used to approximate the
stress as a function of the total strain and the total hisstrgin. Consequently, the stress calculation
is a two stage procedure. First, using the total strain aadistory strain of the previous equilibrium
iteration, a new history strain is calculated using the ilogiinloading network. This procedure is
similar to the return mapping algorithm in a plasticity faration. In the second stage, using the total
strain and the calculated history strain, the stress isetdd from the stress/strain network.

The procedure is illustrated using a 1D tensile test of aaeciThe corresponding mesomodel is based
on a combination of damage and plasticity (Drucker-Pragel Rankine) and shows softening be-
haviour. For models including softening, the size of the onesdel is an important influencing factor,
since a representative volume element (RVE) does no longst. €onsequently, the dimension of
the mesomodel is included as additional input parametdrdridading/unloading and the stress/strain
network.
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