Invariant manifold identification from phase space trajectories
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The identification of basins of attraction is of fundamental importance in the study of dissipative dy-
namical systems. These basins are delineated by the invariant manifolds of the system. Thus, by identifying
the location of the invariant manifolds, we are able to identify the basins of attraction, which may have
fractal structures. There exists a large body of literature for the identification of invariant manifolds in two
and three dimensional flows [1,2,3] when the underlying flow field is given. However, there are few, if any,
methods for the detection of these manifolds when only phase space trajectories are given, which is typical
in vibration problems. We provide three methods capable of identifying the stable and unstable manifolds
of a system given only phase space trajectories and provide a procedure for implementing existing methods,
where possible. Data requirements for the detection methods are also considered.

The stochastic interrogation method [4] is used to obtain a well populated phase space to construct our
data set. However, this may not be needed for a chaotic system. Our first method consists of tracking
a cloud of nearest neighbor trajectories in time and quantifying its deformation (similar to Bowman 1993
preprint). Maxima in deformation under forward(backward) time integration correspond to the location of
the stable(unstable) manifold. The second methods compares a true trajectory to one calculated using a local
linear model (LLM) of N nearest neighbor trajectories. The LLM approximates the trajectories accurately
away from the manifolds, but small errors are amplified near the manifolds. The manifolds then correspond
to the maxima in the error between true and LLM trajectories. The final method is based on the concept of
phase space warping [5]. We compare phase space trajectories of the system for two sets of slightly different
parameters. The small change in parameters slightly shifts the location of the manifolds, which significantly
alters the trajectories located near the manifolds. Thus, by locating maxima in trajectory errors between the
two parameter sets, we again locate the stable and unstable manifolds. Proof of concept calculation for the
periodically forced Duffing’s Oscillator (Figure) show the above methods are indeed capable of identifying
invariant manifolds given sufficient data. The methods are also shown to be applicable to other systems,
such as fluid flows.
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Figure 1: Examples of manifold detection methods using forced duffings oscillator. Also shown is the deformation
of a cloud of nearest neighbors for the steady Duffing’s Oscillator. Notice that near the manifolds the cloud deforms
much more than away from the manifolds.
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