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peter.hansbo@chalmers.se

Key Words: model adaptivity, model error, a posteriori error

ABSTRACT

The usage of a posteriori error estimation and adaptive procedures within the finite element
method (FEM) is rather well-developed. The algorithms are usually based on the discretization
error, i.e., the discrepancy between the continuous model—the exact solution of the differential
equation—and the corresponding finite element approximation. However, it could be necessary
to consider the choice of model carefully, as to keep the computational cost at a minimum (the
most accurate model may be inherently expensive). Thus an appealing strategy would be to
start with a simple model and increase its complexity only when needed.

We apply the concept of model adaptivity to the elasticity equation in two dimensions for thin
domains. Typically, reduced models are then obtained using simplified deformation relations,
e.g., such as the Bernoulli and Timoshenko beam theories. We shall instead follow Babuška, Lee
and Schwab [1], and use a model hierarchy based on increasingly higher polynomial expansions
through the thickness of the domain, coupled with a Galerkin approach. An a posteriori error
indicator is introduced in terms of the total error, including discretization and modeling errors,
which allows for adaptive refinement of the computational domain where the error is prominent,
providing a means to obtain an inexpensive model meeting a prescribed accuracy.

The domain discretization is such that the mesh is resolved by several elements in one dimen-
sion, but it has no further elements through its thickness, in that sense making the domain thin.
The total error, typically measured in energy norm, is then reduced by: either 1) introducing
more elements; or 2) changing the underlying model. The latter is based on raising the order
of the polynomial approximation along element sides (in the x2-direction).

Consider the case of the exact solution residing in a tensor product space

u(x) =
(
φ1(x1)ψ1(x2), φ2(x1)ψ2(x2)

)
∈ [V × W ]2 ,

where φi ∈ V and ψi ∈ W . We now pose four different problems

1. find u ∈ [V × W ]2 such that a(u, v) = L(v) for all v ∈ [V × W ]2,



2. find uψ ∈
[
V h × W

]2 such that a(uψ,v) = L(v) for all v ∈
[
V h × W

]2,

3. find uφ ∈
[
V × W h

]2 such that a(uφ, v) = L(v) for all v ∈
[
V × W h

]2,

4. find uh ∈
[
V h × W h

]2 such that a(uh, v) = L(v) for all v ∈
[
V h × W h

]2,

and notice the energy orthogonality with respect to v ∈
[
V h × W h

]2, that is, a(u∗,v) = 0, for
u∗ solving either of Problems (1–3). This property can be used to estimate

‖u − uh‖ := a(u − uh, u − uh)1/2

in conjunction with Cauchy-Schwarz inequality and a saturation assumption:

‖u − uh‖ ≤ 1
2(1 − β)

(
‖uφ − uh‖ + ‖uψ − uh‖

)
, β < 1. (1)

The upper bound of (1) is the sum of the discretization and modeling errors, which also satisfy
the following equalities

‖uφ − uh‖2 = L(uφ − πhuφ) − a(uh, uφ − πhuφ),

‖uψ − uh‖2 = L(uψ − πhuψ) − a(uh, uψ − πhuψ).

In practice u∗ − πhu∗ must be approximated, e.g., by substituting u∗ with an approximation
from a higher-resolution mesh (subject to either h-, p- or combined hp-refinement), which in
turn is interpolated onto the coarser. By means of this example, indicators for the discretization
and model errors, as well as an estimate of the total error, may be obtained.
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~ relative energy error (squared): 1.835e−03; # iterations: 19

Figure 1: The jagged solid line indicates model refinement at stress and strain extremes

In Figure 1 a completely fixed console with piecewise Young’s modulus reacts to a surface trac-
tion. The implemented algorithm, utilizing interpolatory Lagrangian basis functions, adaptively
refined a two-element bilinear mesh to converge within a prescribed tolerance. (The solution of
the corresponding Bernoulli beam equation has been enclosed within the console.)
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