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ABSTRACT

This contribution focuses on estimating a representation of the statistical properties of a stochastic pro-
cess. More specifically, we aim at estimating a statistical representation of the sea bottom displacement
field in earthquakes. The sea surface data is available through, say, satellite observations and an inverse
method is used to retrieve the corresponding time-varying sea bottom displacement field for each earth-
quake event. From a collection of these observations, the goal is to estimate a statistical representation
of the displacement fieldS.

The approach is two-fold: first, for each realizationθS (earthquake event), one needs to retrieve the
displacement fieldS(x, t, θS) giving rise to the observed time-varying sea surface field. Second, with a
collection ofnobs identified displacement fields and in the spirit of [1], determine a representation of its
statistical properties.

The first step consists in retrieving the input of a process given its output (observations). As the physical
system is only poorly known and characterized, it is subjected to uncertainties (sea depth field, salt
content, sea temperature profile, etc.) and this step thus constitutes a stochastic inverse problem. An
additive Schwarz preconditioned spectral elements formulation is used to solve the primal and dual
solutions of the stochastic Shallow Water Equations. This optimization framework combined with a
L-BFGS strategy leads to the determination ofS.

Using a Karhunen-Loeve decomposition, approximating the random field reduces to determining a
finite set ofN uncorrelated random variablesφi(θ

(n)
S ), i = 1, . . . , N , n = 1, . . . , nobs, hereafter simply

denotedφ(n)
i . One then needs a representation of the different random variablesφi. In this work, use

is made of their spectral approximation based on the so-called Polynomial Chaos (PC) decomposition
[2] where the Karhunen-Loeve coefficientsφi are modeled as random quantities defined on an abstract
probability space(Θ,B, dP ). The approximation is done at the level of the statistic behavior and not for

a particular realization. This results in identifying the coefficientsα(i)
j , j = 0, . . . , P , i = 1, . . . , N of

the PC decomposition through an inverse-like method where the goal is to findα(i)
j such as the surrogate

φ̃i(θ) =
∑P

j=0 α
(i)
j Ψj(ξ(θ)) is the closest toφ(n)

i , n = 1, . . . , nobs in the statistical sense: this is the



maximum likelihood approach. Hereξ is a vector ofNξ iid Gaussian random variables with zero mean
and unit variance andθ ∈ Θ.

To solve the optimization problem resulting from the maximum likelihood approach, the likelihood
functionL is defined as

L ≡

nobs∏

n=1

EΘ

{
δ
[
φ(n)

− φ̃(θ)
]}

=

nobs∏

n=1

∫

Θ
δ
[
φ(n)

− φ̃(θ)
]

dP (θ) (1)

and its integrand is regularized yielding

L̃ ≡

nobs∏

n=1

∫

Θ
δ̃
[
φ(n)

− φ̃(θ)
]

dP (θ) (2)

where the Dirac distributionδ is replaced by a functioñδ ∈ H1(RN ) andEΘ denotes the mathematical
expectation.

This regularized expression of the likelihood allows for anexplicit form of its Gâteaux derivative
and a gradient-based optimization strategy can then be usedto find the optimal coefficients vector
α∗ ≡ arg maxα∈Ωα

L̃ (α).

Numerical examples of the whole solution method will be presented to demonstrate the ability of the
current approach to efficiently estimate a statistical representation of a stochastic process from exper-
imental data. As a first glimpse of the results, Fig. 1 shows the sea surface computed both from the
actual displacement fieldS (left) and from the one identified through stochastic inverse method (right).
The good agreement demonstrates the effectiveness of the identification step.
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Figure 1: Mean sea surface field at intermediate time (t = 2400 adimensional units) for the actual
displacement field (left) and the inverse-computed field (right). A good agreement can be observed.
The ocean is here considered to be a 1000 kilometer wide square of uncertain depth of mean = 1000 m
and standard deviation = 200 m following a uniform distribution.
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