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ABSTRACT 

 
This work provides a comprehensive solution to the problem of 3D, one point collisions-with- 
friction of simple, non-holonomic systems. The underlined theory is based on Keller's idea 
[1], regarding the normal impulse as an independent integration variable. Keller generated 
differential equations with components of the relative velocity of the colliding points of two 
balls, as dependent variables, integrated these equations, and obtained the components of the 
relative velocity of separation, the normal and tangential impulses, and the changes in the 
motion variables. Stronge [2], Bhatt and Koechling [3], and Batlle [4] exploited this idea, 
analyzing certain special cases. They did not generalize their results to simple, non-holonomic 
systems, and did not examine the theory when used with Newton's, Poisson's and Stronge's 
hypotheses. It is the purpose of this work to fill these gapes. 
The point of departure for the present work is the p-dimensional governing (matrix) equation   
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of a p DOF simple, nonholonomic system, where 1−M  is the inverse of the mass matrix, 

1    ...   R R
pv v  are coefficients of the motion variables in the expression of the relative velocity 

of the colliding points, and n, t and s are dextral, mutually perpendicular unit vectors, n being 
normal to the 'plane of collision'. This equation is obtained by the integration of the system 
equations of motion between 1t  and 2t , the collision starting and terminating instants; and 
possess p+3 unknowns ,   and n t sI I I , the normal and tangential impulses, and 1,..., pu u∆ ∆ , 
the changes in the motion variables. It can be shown that this equation can be replaced with  

dv d d dn nn n nt t ns sm I m I m I= + +% % %%      (2) 

dv d + d + dt nt n tt t ts sm I m I m I= % % %%       (3) 

dv d + d + ds ns n ts t ss sm I m I m I= % % %%       (4) 
where , , ...,nn nt ssm m m  are configuration dependent parameters, dv ,  dv  and dvn t s% % %  are the 
differentials of the relative normal ( vn% ) and tangential ( v , vt s% % ) velocities, and 

d ,  d , and dn t sI I I% % %  denote differentials of ,   and n t sI I I% % % , where 2( )n nI I t= % , 2v v ( )n n t= % , etc. 
Following Keller [1], let s (the 'slip speed') and φ  (the 'slip orientation') be defined   
 v ,  v   dv d d ,  dv d  + d  t s t ssc ss c s ss s s scφ φ φ φ φ φ φ φ= = ⇒ = − =% % % %  (5) 
(see also [2]) and note that as long as there is sliding 
 d = d ,  d = dt n s nI I c I I sµ φ µ φ− −% % % % ,     (6) 
where µ  is Coulmb's coefficient of friction. With f, g and h defined as 
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it can be shown, with the aid of Eqs. (2)-(7), that 
 nn nt nsf m m c m sµ φ µ φ= − −       (8) 

2 2 2nt ns tt ss stg m c m s m c m s m s cφ φ µ φ µ φ µ φ φ= + − − −    (9) 
2 2( ) ( )nt ns st tt ssh m s m c m c s m m s cφ φ µ φ φ µ φ φ= − + − − + − .  (10) 

and that Eqs. (2)-(4) and (6) can be replaced with the following set of differential equations:  

 
d / d ,   d /d / ,  dv / d = ,
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Equations (11) are used to uncover ,  , v ,   and n t ss I Iφ % %%  as functions of nI%  for the sliding 
portion of the collision, and, when applied to a flying beam hitting a bump (the exact details 
are given in the paper), give rise to figures such as 1 and 2. If s reduces to zero (see Fig. 2), 
then sliding halts, an event followed either by sticking or by sliding resumption (see [2], p. 
68). To uncover which of these occur, assume first that sticking follows, in which case Eqs. 
(2)-(4) are rewritten with v 0 and v 0t s≡ ≡% % . The resulting equations become algebraic, with 
differentials replaced by differences; and can be solved as follows, 

v    v    vST ST ST
n n n n t t n t s s n sI I c I I c I I c= + ∆ = + ∆ = + ∆% % %% % %    (12)  

where ST
nI%  is the value of nI%  when sticking firstly occurs (circles in Figs. 1 and 2), 

v v vS ST
n n n∆ = −% , and ,  and  n t sc c c  are functions of , , ...,nn nt ssm m m . It is next argued that if 

sµ µ< , where 2 2 1/2 2 2 1/2/( + ) /( + )ˆs n t s n t sI I I c c cµ = = , then sticking prevails. Otherwise, sliding 
is resumed. It is finally shown in the paper that the introduction Newton's [6], Poisson's [5] 
and Stronge's [2] hypotheses underlie theories for the identification of the type of collision 
and the evaluation of ,   and n t sI I I , and ultimately of 1,..., pu u∆ ∆  (Eq. (1)). These theories 
and the associated algorithms are described in the paper, their generality is discussed, as is 
their energy-consistency. Finally, the paper investigates the manner the 3D theories tie up 
with their respective 2D counterparts. 
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