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ABSTRACT 

Transient finite element simulations of electromechanical devices with highly perforated 
deformable or movable structural components are computationally very expensive or even 
prohibitive, when multiple energy domains and their mutual interactions have to be considered. 
This is in particular the case, when fluid-structure interactions have to be included in the 
physical models in order to analyze fluidic damping effects as they occur in microdevices with 
complex geometry. Especially perforations increase the computational expense drastically, 
because they require a highly resolved mesh with a large number of discretization nodes to 
obtain an accurate description of the damping behavior. 

We developed a modeling toolbox in MATLAB that, starting from discretized FEM device 
models, enables the automated generation of physically-based mixed-level reduced-order 
models (Fig. 1); these constitute the proper basis for the coupled-domain simulation of complex 
microstructured devices within acceptable computation time. The underlying theoretical 
framework is provided by the generalized Kirchhoffian network theory. In this approach, a 
microsystem is decomposed into functional blocks, which are represented by reduced-order 
macromodels. Since these are based on a physical description of the functional behavior, they 
are scalable with design parameters and, after calibration, are predictive. A fast, but yet accurate 
system-level model of the full microdevice is obtained by interlinking them to form a 
generalized Kirchhoffian network, which inherently governs the exchange of energy and other 
physical quantities between the blocks. Thus, our methodology provides a natural and efficient 
way to tackle all the couplings between the electrostatic, fluidic, and mechanical energy domain. 
For the implementation of fluidic damping, we employ the Reynolds equation, which is 
discretized in form of a finite fluidic network and augmented by dedicated compact models to 
properly include the effects of perforations, edges and corners of the microstructure (Fig. 3). We 
obtain simulation results, which are in excellent agreement with the experimental findings [1,2]. 

A further enhancement of our method is achieved by employing the “reduced hole array” 
(RHA) scheme. This is an order reduction technique which groups a number of parallel compact 
models of perforations in arrays and replaces them with computationally less expensive 
‘superhole’ compact models (Fig. 4). The RHA scheme has been implemented in our toolbox as 
an automated node condensation process steered by structural data that is extracted from the 
geometry of the microstructure. As illustrative example, we considered a deformable membrane 
with a total number of 1225 perforations (Fig. 2) and generated full and RHA macromodels 
with arrays spanning 4, 25 and 100 perforations. The VHDL-AMS models using RHAs show no 
significant loss of accuracy (Fig. 5), but lead to a drastic speed-up of computation time by a 
factor of 40 for the simulated response of the membrane to a voltage step (Fig. 6). Thus, by the 
integration of the RHA technique we are equipped with a powerful modeling toolbox to 
generate macromodels for a class of microstructures which is very difficult or even impossible 
to treat with finite elements. 
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Fig. 1 Workflow of the automated macromodel 
generation using the MATLAB toolbox. The 
RHA process is implemented as an extension.  
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Fig. 2 Microstructured membrane perforated 
with 1225 holes. The membrane is 
electrostatically actuated. As the ambient 
pressure is 1013 hPa, the motion of the 
membrane is heavily affected by squeeze film 
damping in the gap to the substrate. 
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Fig. 3 Perforated plate and corresponding fluidic 
FN. Black blocks symbolize the discretized 
Reynolds equation; green and red blocks denote 
resistances accounting for edges and holes. 
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Fig. 4 Principle of the RHA technique: arrays of 
single holes are replaced by one ‘superhole’ 
compact model. 
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Fig. 5 Displacement of the membrane as 
response to a voltage step, calculated with the 
full model and different RHA models. No 
significant loss of accuracy is observed. 
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Fig. 6 Computation times of the full model and 
RHA models on a 3GHz processor. In this case, 
the computation time can be reduced by a factor 
of 40. 
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