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ABSTRACT

The absence of an inherent length scale in classical theories of plasticity, and the conequential inabil-
ity to capture size-dependent effects particularly at the mesoscale, have led to various extensions of
classical theories which introduce one or more length scales and incorporate non-local effects in the
plastic part of the constituive relations. One key area of investigation has been concerned with the de-
velopment of constitutive theories for both single and polycrystals which include dependence on plastic
strain gradients (see, for example, [5]).

Two relevant theories that have emerged are, first, those in which gradient effects are mainfested through
the appearance of the laplacian of plastic strain in the yield condition [1]. Other theories are based on
the inclusion of the Burgers vector or tensor as a variable that accounts for dislocation densities in single
crystals and incompatibilities in polycrystals [6-8].

In recent work [3,4] the model of gradient plasticity presented in [1] is analysed in detail, and an
approximate solution procedure using the discontinuous Galerkin method is constructed, analysed, and
implemented. Also for polycrystals, a model of gradient plasticity based on the use of plastic strain
gradient and Burgers tensor and presented in [7] is analysed in [9], and conditions for well-posedness
established.

The purpose of the present contribution is to address a similar set of questions pertaining to problems
involving single-crystal plasticity. A unified framework which accounts for gradient effects in the form
either of gradients of slip rates or of the Burgers tensor, is adopted. First, the problem is posed as a
variational inequality; this variational formulation is then analysed, and the influence of the gradient
terms and associated boundary conditions on well-posedness is explored.

The second contribution concerns the development of numerical simulations using finite element ap-
proximations. It is well known [2] that the constraints associated with multiple slip planes leads to
complications in the rate-independent theory that arise from the linear dependence of these constraints,



a situation that may be circumvented through the introduction of a viscoplastic regularization. The de-
velopment of robust, convergent algorithms is explored for rate-independent and -dependent systems,
with a view to elucidating the mathematical, physical and computational influence of the gradient terms.
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