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ABSTRACT 

New multiscale method for the analysis of failure that invokes unit cells to obtain the 
subscale response is described. This method, called Multiscale Equivalent Aggregating 
Discontinuities (MEAD) [1], is based on the concept of "perforated" unit cells, which 
excludes subdomains that are unstable, i.e. exhibit loss of material stability. By means 
of this concept, it is possible to compute an equivalent discontinuity at the finer scale, 
including both the direction of the discontinuity and the magnitude of the jump. These 
variables are then passed to the coarse scale model along with the stress in the unit cell. 
The discontinuity variables at the coarser scale are invoked by injecting the 
discontinuity by the extended finite element method (XFEM) [2, 3] procedure.  

 
1.  Multiscale Equivalent Aggregating Discontinuities Method 
 
Multiscale methods such as FE2 [4] are widely used because they enable the constitutive 
equations at the macroscale to be computed on-the-fly from microscale models. 
However, the classical FE2 method is not applicable to failure problems.  In this study, 
we have developed a way to apply FE2 to failure problems.  
     In the MEAD method, the coarse scale model is linked to unit cells with fine scale details.  
Generally, these unit cells are only linked to “hot” spots, where a preliminary computer 
simulation indicates that loss of a material stability, i.e. failure is likely. At each quadrature 
point, the coarse scale model passes a measure of the deformation to the unit cell. The 
deformation gradient, F , is passed so that the method is applicable to large deformations and 
material nonlinearities. The unit cell boundary condition is then prescribed by the following 
displacement 

 
 ( )m M m= − ⋅u I XF                                                (1) 

 
where u  is the displacement, I  is the identity tensor and X  is the material coordinate. 
We use a superscript m  and M  to denote variables associated with the microscale (fine 
scale) and the macroscale (coarse scale or coarse-grained) model, respectively. 
     An equivalent discontinuity is extracted from the deformation of the unit cell which 
can be passed to the coarser scale. This is accomplished by using a form of Hill’s 
theorem; see, Zohdi and Wriggers [5, p. 59]. 
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Figure 1. Schematic of MEAD method; the macro model provides deformation gradient F  to 
the unit cells and stress P  and equivalent discontinuities u  are passed back to the 
macroscale. 
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Figure 2. Comparison of the results from direct numerical simulation (DNS) and MEAD: (a) 
the undeformed model for DNS, (b) solution from the DNS, (c) solution from the MEAD, and 
(d) comparison of the force deflection curves. 
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