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ABSTRACT

A widely discussed problem in computational engineering is how to combine the advantages of both
finite element method and meshfree methods. Whereas a clear advantage of meshfree methods is for
example the possibility of refinement by arbitrary placement of new nodes regardless any mesh most of
these methods suffer from drawbacks especially close to the boundary, where special strategies such as
point collocation method or Nitsche’s method are required in order to impose boundary conditions. For
a long time benefitting from the characteristic advantages of both meshfree and meshbased methods
was possible only by means of intricate blending methods.

In [1] a novel approximation scheme using so called first order maximum-entropy (max-ent) shape
functions was developed. A key feature of this approach is the capacity of uniting the advantages of both
meshfree and meshbased methods by enabling a weak Kronecker-Delta-property in the absence of any
mesh. By appropriate parameter choice even a seamless transition between linear finite elements and
meshfree approximation is possible and in addition to that max-ent shape functions satisfy a positivity-
requirement, which is a key feature in dealing with dynamical problems as discussed in [2].

Figure 1: Second order moving least square (left) and max-ent (right) interior shape functions: Clearly
only the max-ent shape function is positive throughout the whole domain and allows to impose bound-
ary conditions straightforward

However, whereas common meshfree methods can be extended to higher order consistency only at the
sacrifice of positivity of the shape functions, which is an obvious drawback for dynamical problems,
max-ent approach allows an extension to second order consistency still preserving positivity and a
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Figure 2: Relative error of the eigenfrequency spectrum of an elastic one dimensional rod applying dif-
ferent approximation schemes: Quadratic Finite Elements (Lg2), Moving Least Square Method (MLS)
and B-spline Method (Bsp) as well as second order Max-Ent Method (SME) and linear Max-Ent
Method (LME)

weak Kronecker-Delta-property (cf. Fig. 1). As a consequence imposing boundary conditions on second
order max-ent shape functions is straightforward and the approximation power in dynamical problems
is superior as demonstrated in Fig. 2 using the example of the eigenfrequency analysis of an elastic
rod. Furthermore second order max-ent approximation represents the only non-negative higher order
approximation scheme for unstructured data input in Rn.

Doubtlessly a crucial point in the assessment of an approximation scheme is computational cost. In sev-
eral examples it was found that numerical integration of max-ent shape functions can be done by means
of clearly less integration points than numerical integration of common meshfree shape functions. In
addition to that evaluation cost at each integration point is moderate so that max-ent approach unites
remarkable approximation power with competitive computational cost.

The presentation will comprise an introduction into max-ent approach in general and especially into
second order max-ent approximation. Advantages of the method will be oulined by means of several
examples covering statical and dynamical problems of solid mechanics as well as fluid type model
problems.
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