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INTRODUCTION 
Design of Micro Electro Mechanical Systems (MEMS) often includes the presence of many 
oscillating elements and components, which are usually represented by perforated plates 
suspended on elastic beams. Both elastic and dissipative effects of the fluid surrounding the 
structure are observed to be variable with the frequency of actuation [1]. This phenomenon is 
well known as ‘squeeze film damping’. Many analytical [2] and numerical [3] works have been 
presented about this topic. The aim of this work is to define an energetic approach for the 
experimental evaluation of dynamic parameters. The coupling behaviour of the mechanical  
versus electrostatic domain is linearized by the assumption of small oscillation amplitudes. 

THE ENERGETIC METHOD 
This method is well suited to be supported by experimental measurements in the time domain. 
The optical interferometric and the laser techniques can be used at this proposal. Damping and 
stiffness parameters are demonstrated to be evaluated from the hysteresis loop between the 
driving force and the displacement of the structure. 
In fig. 1 is presented  the scheme of a typical MEMS perforated damper plate [3]. In a model 
order reduction approach the structure can be simplified, for the purpose of the present work, to 
the single degree of freedom system (spring-mass-damper) where: m is the mass of the plate, c 
is the fluidic damping and ktot is the sum of the fluidic (kf) and the structural (ks) stiffnesses. The 
driving electrostatic (AC) force is indicated as 
 ( ) tFtF ωcos0=  (1) 
and the frequency of actuation is f = ω/2π.  
The resulting second order differential governing equation is 
 ( ) ( ){ } ( )tFzkhkzhczm sf =+++ ,, ωω &&& . (2) 
As indicated in the eq. (2), both dynamic coefficients c and kf generated by the fluid presence 
are dependent from the frequency of actuation and from the gap thickness (h) extension; this 
represents a double source of non-linearity of the system produced by the structural-fluidic 
interaction. This evidence is represented in the figs. 2a and 2b, where the fluidic damping and 
stiffness are estimated through a harmonic FE analysis at different values of ω and g.  
The solution of the eq. (2) can be written as  
 ( ) ( )ϕω −= tztz cos0  (3) 

where  ( ) 2222
00 cmkFz tot ωω +−=  and ( ){ }21tan ωωϕ mkc tot −= − . 



 

By plotting the values of F(t) and z(t) from eqs. (1) and (3) it is possible to trace the hysteresis 
loop of fig. 3 [4]. Some fundamental quantities can be easily calculated as indicated in the 
figure. The value of ks can be experimentally measured with a static load as the ratio between 
the static force Fst and the corresponding displacement zst. The energy dissipated per cycle of 
vibration due to the fluidic damping can be calculated by integrating the product of the force 
and the displacement over one cycle, obtaining  
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APPLICATION ON A MEMS DAMPER 

As an example, the hysteresis loop of the structure reported in fig. 1 with a = 40μm, s0 = 1μm, 
s1 = s2, hc = 2μm, h = 1μm and number of holes N = 64 is plotted for three different values of 
the frequency of actuation (1, 10 and 100kHz) by means of a FE harmonic analysis. The 
harmonic analysis is performed by imposing a uniform velocity to the structure; a structural 
stiffness of the elastic beams ks = 0.294N/m is assumed. The values of damping and stiffness 
calculated from the hysteresis loops are reported in the tab. I as cloop and ktot,loop. In the same 
table the corresponding values calculated by the FE fluid pressure force acting on the lower 
surface of the damper (cFEM and kf,FEM) are reported. The damping values result to be identical, 
as the stiffness values, if the structural contribution ks is added to the FE result. 

CONCLUSIONS 
The presented method can be used to extract damping and stiffness parameters from 
experimental measurements on MEMS devices in the time domain and trace as result the non- 
linear  dependency of the ‘squeeze film damping’ parameter in the frequency range; driving 
force and displacement histories can be used to trace the corresponding hysteresis loop. 
 

 
Fig. 1 General shape of a MEMS damper Fig. 2a Damping versus gap and 

frequency variation Fig. 3 Force-displacement hysteresis loop 

frequency 
[kHz] 

cloop 
[Ns/m] 

ktot,loop 
[N/m] 

1 6.12·10-6 2.94·10-1 
10 6.12·10-6 2.95·10-1 

100 6.11·10-6 4.18·10-1 
frequency 

[kHz] 
cFEM 

[Ns/m] 
kf,FEM 
[N/m] 

1 6.12·10-6 1.24·10-5 
10 6.12·10-6 1.24·10-3 

100 6.11·10-6 1.24·10-1 
  

Tab. I Damping and stiffness evaluated by 
histeresis loop and FE pressure distribution 

Fig. 2b Stiffness versus gap and 
frequency variation 

Fig. 4 Hysteresis loop of a MEMS damper at 
different frequencies obtained from FE model 
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