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ABSTRACT 

In this work it is presented the large deformation analysis of non-linear elastic structures 
based on the Natural Neighbour Radial Point Interpolation Method (NNRPIM) [1, 2], 
which is an improved meshless method. 
The NNPRIM uses the Natural Neighbour [3] concept in order to enforce the nodal 
connectivity. Based on the Voronoï diagram [4] small cells are created from the 
unstructured set of nodes discretizing the problem domain, the “influence-cells”. These 
cells are in fact influence-domains entirely nodal dependent. The Delaunay triangles [5], 
which are the dual of the Voronoï cells, are used to create a node-depending background 
mesh used in the numerical integration of the NNRPIM interpolation functions. Unlike 
the FEM, where geometrical restrictions on elements are imposed for the convergence 
of the method, in the NNRPIM there are no such restrictions, which permits a random 
node distribution for the discretized problem. The NNRPIM interpolation functions, 
used in the Galerkin weak form, are constructed in a similar process to the Radial Point 
Interpolation Method (RPIM) [6, 7], with some differences that modify the method 
performance. In the construction of the NNRPIM interpolation functions no polynomial 
base is required and the used Radial Basis Function (RBF) [8] is the Multiquadric RBF. 
The NNRPIM interpolation functions posses the delta Kronecker property, which 
simplify the imposition of the natural and essential boundary conditions. 
Once the scope of this work is to extend and validate the NNRPIM in the large-
deformation elasto-plastic analysis, the used non-linear solution algorithm is the 
Newton-Rapson initial stiffness method [9] and the efficient “forward-Euler” procedure 
[10] is used in order to return the stress to the yield surface. 
Several non-linear elasto-plasticity problems are studied to demonstrate the 
effectiveness of the method. The numerical results indicated that NNRPIM handles 
large material distortion effectively and provides an accurate solution under large 
deformation.  
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