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ABSTRACT

Numerical fluid dynamics is nowadays a powerful and reliable tool for simulating 
different thermo-fluid dynamic processes. Hence, it permits to analyze different 
operative variables and geometrical configurations to investigate technological windows 
of different processes in metallurgical industry. In some cases, the industrial process 
involves moving solid contours like rotating cylinders or circulating strips. This solid 
contours exchange momentum and heat with the surrounding fluid. In this paper a fluid 
dynamic – thermal coupled numerical model was presented. This model takes into 
account the movement of solid contours and the thermal coupling between the different 
model domains (solid or liquid).
In order to obtain the field of velocities, pressures and temperature in a turbulent 
incompressible fluid flow the equations of Navier Stokes and energy using the 
Boussinesq approximation are solved. The mathematical description of the turbulent 
flows using mean quantities equations makes necessary the use of turbulence models to 
close the problem. For industrial problems modeling the k-ε model is commonly used, 
where k is the turbulent kinetic energy and ε is the turbulent kinetic energy dissipation 
rate). To obtain the field of temperatures in the solid, the energy equation are solved. 
The convection term included in the energy equation allows modelling a moving solid 
seen from an eulerian point of view as to be rotating cylinders or plates moving in the 
direction of its axis.

The Navier Stokes and scalar transport equations are solved using the streamline 
upwind Petrov Galerkin method (SUPG) and are linearized using a Newton Raphson 
scheme. The pressure P is replaced in terms of the velocity in the equation using the 
penalty of the incompresibility condition. The domain was discretized using 8 nodes 
linear isoparametric hexahedral elements.
Due to it is solved a reduced domain for the fluid, the meshes that discretize the 
different domains (solid and fluid domains) are not connected. In order to connect the 
solid domain and the fluid dynamic model it is necessary to know, for each contour
node of the fluid mesh, the solid contour velocity value in that point. Taking this 
velocity, it is obtain the equivalent tangential tension to apply in the contour fluid 



domain due to the relative movement between solid and fluid. For it, each fluid mesh
contour node is projected on the solid contour. The thermal connection between the 
fluid and the solid exists due to the heat exchange between both domains through the 
fluid - solid interphase. This heat exchange is modeled by means of a Newton cooling 
law. The model gives the possibility that the different meshes are not connected; this 
generates a great flexibility in meshing and in geometry modification.
The domains coupling algorithm could be validated using simple problems. Finally, the 
model developed was validated and applied successfully to the simulation of the fluid 
dynamic thermal behavior of hot dip galvanizing bath.
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