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ABSTRACT

Optimal shape design is considered a field of great interest for industrial applications. The goal in this
class of problems is to optimize a performance criterion dependent on the geometry of some body, while
satisfying the possible constraints. For instance, a typical optimal shape design problem in aeronautics
is to determine an airfoil section with given lift and reduced drag.

Mathematically, optimal shape design problems belong to the more general class of variational prob-
lems [1]. The aim of a variational problem is to find a function which is the optimal (minimal or
maximal) value of a specified objective functional. Optimal shape design problems are usually defined
by integrals, ordinary differential equations or partial differential equations.

While some simple optimal shape design problems have analytical solution, general problems can only
be solved numerically by using direct methods [1]. The fundamental solution approach of direct meth-
ods comprises three independent steps: (i) selection of a parameterized function space representing the
possible solutions to the problem; (ii) formulation of the variational problem, by choosing a suitable
objective functional; (iii) solution of the reduced function optimization problem with deterministic or
stochastic methods.

Regarding the first step, the function space chosen to represent the shape of a body is traditionally that
spanned by a Bézier polynomial [2]. However, this approach presents several drawbacks. Certainly,
Bézier curves do not have adequate approximation properties, and they are numerically instable for large
numbers of control points. This also might cause the presence of many local optima in the objective
function, even for very simple problems.

In the last decades, research in artificial intelligence has found new models of knowledge representa-
tion and processing that are closer to ‘human-like’ reasoning. Neural networks is a powerful paradigm
there, which has been successfully applied to many applications in engineering. A neural network is a
biologically inspired computational model consisting of a network architecture composed of artificial



neurons [3]. This structure contains a set of free parameters, that are adjusted to perform certain tasks.
The multilayer perceptron is an important model of neural network, defined as a feed-forward network
architecture of perceptron neuron models [3].

Within a variational formulation for the multilayer perceptron, the learning problem for that neural
network consists in finding a function which is an extremal for some functional [4]. Moreover, a vari-
ational formulation for the multilayer perceptron provides a direct method for the solution of general
variational problems, in any dimension and up to any degree of accuracy. Typical examples include
optimal control, inverse problems and optimal shape design.

In this work we investigate the feasibility of neural networks for solving optimal shape design problems.
Here the function space chosen to represent the shape of a body is that spanned by a multilayer per-
ceptron. Indeed, a multilayer perceptron with only one hidden layer of sigmoid neurons and an output
layer of linear neurons provides a general framework for approximating any function from one finite
dimensional space to another up to any desired degree of accuracy, provided enough hidden neurons
are available. In this sense, multilayer perceptron networks are a class of universal approximators [5].

In order to validate this numerical method we train a multilayer perceptron to solve two optimal shape
design problems in the aeronautical industry with analytical solution. The neural network results are
then compared against the exact values. In particular we determine the optimal shape of a body of
revolution for minimum drag in a Newtonian flow [6], and the optimal shape of a body of revolution
with a given volume and for minimum drag in a Newtonian flow [6]. The former is an unconstrained
problem, while the later is a constrained one.

The neural networks results show a very good agreement with the analytical solutions. More specifi-
cally, the deviation between the numerical and the exact values is less than 0.1% for the two problems
considered. Also, the objective function in both cases does not show to contain local optima, since the
quasi-Newton training algorithm always produces convergence to the global optimum.

Future work will be concentrated on the solution of more complex optimal shape design problems by
means of neural networks. Special interest is devoted to the optimal design of a wing section for given
lift and reduced wave drag in an inviscid compressible flow.
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