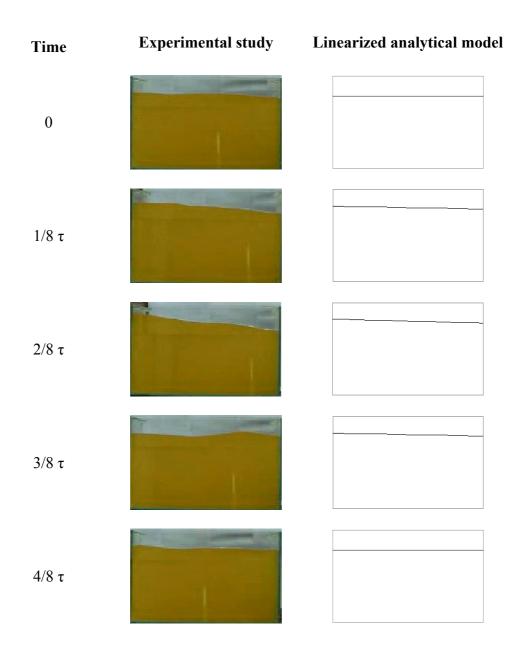
SLOSHING PROBLEM: SIMULATION AND EXPERIMENTAL VALIDATION

*Marcela A. Cruchaga¹, Alex Raventós¹, Diego J. Celentano² and José L. Almazán³

¹ Departamento de Ingeniería	² Departamento de Ingeniería	³ Departamento de Ingeniería
Mecánica	Mecánica y Metalúrgica	Estructural y Geotécnica
Universidad de Santiago de	Pontificia Universidad	Pontificia Universidad
Chile - USACH	Católica de Chile - PUC	Católica de Chile - PUC
Av. Bdo. O'Higgins 3363	Av. Vicuña Mackenna 4680	Av. Vicuña Mackenna 4680
Santiago - CHILE	Santiago - CHILE	Santiago - CHILE
mcruchag@usach.cl	Dcelentano@ing.puc.cl	jlalmaza@ing.puc.cl

Key Words: Interfaces, Two-fluid flow problems, Experimental validation.

ABSTRACT


This work presents the numerical and experimental analyses of a sloshing problem at low frequencies. The physical layout consists of a recipient placed over a shaking table able to produce controlled harmonic motion. The fluid dynamic response of the interface is reported for different: liquids (water and shampoo), depths and motion amplitudes and frequencies. Measurements of the free surface evolution are used to describe the oscillatory behaviour of the different analysed conditions.

A numerical model developed within the context of a finite element fixed mesh method [1] is used to simulate the physical situation. The computed interface positions are compared with the experimental data to validate such a model in the description of a sloshing problem.

Preliminary results for water are illustrated in Figure 1 showing the interface position at different fractions of a period together with an analytical solution (taken from [2]). The water depth is 20 cm and the characteristics of the motion are: maximum horizontal displacement 19 cm and frequency of 22 rpm.

ACKNOWLEDGEMENTS

The support provided by the Chilean Council for Research and Technology CONICYT (FONDECYT Project No. 1060141) is gratefully acknowledged.

REFERENCES

- [1] Marcela A. Cruchaga, Diego J. Celentano, Tayfun E. Tezduyar; "Collapse of a liquid column: numerical simulation and experimental validation", *Computational Mechanics*, Vol. **39**, pp. 453-476 (2007).
- [2] G. X. Wu, R. Eatock Taylor and D. M. Greaves, "The effect of viscosity on the transient free-surface waves in a two-dimensional tank", *Journal of Engineering Mathematics*, Vol. 40, pp. 77-90 (2001).