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ABSTRACT 

The main goals of code and solution verification (or calculation verification) are to assess 
the asymptotic convergence of numerical solutions as a function of mesh discretization 
(Δx) and to quantify solution uncertainty. The challenge is to verify that the approximate 
solutions of the discretized laws-of-conservation or equations-of-motion converge to the 
correct solution as Δx  0. In the case of code verification where the solution of a test 
problem is known exactly (analytically), common practice is to obtain several discrete 
solutions from successively refined meshes or grids; calculate Lp or Hp norms of the 
solution error; verify the rate with which discrete solutions converge to the continuous 
solution; and, finally, quantify solution error/uncertainty at any grid or mesh size Δx [1, 2]. 
In the case of solution verification where the exact solution is unknown, the solution error 
and its norms cannot be computed directly as before. One approach is to reduce the 
solution fields to scalar quantities, such as peak values or integrands estimated over the 
computational domain. Working with scalars makes it possible to verify asymptotic 
convergence from a mesh refinement study and quantify solution error and/or uncertainty, 
even in the case of joint, space-time (Δx; Δt) refinement [3, 4]. 

We propose a new capability to assess asymptotic convergence for entire, discrete 
solution fields without having to reduce them to scalars. The technique is capable of 
estimating lower and upper bounds of solution error ||yExact – y(Δx)||2 (in the sense of the 
L2 norm) when the discrete and exact solutions are entire fields, that is, yExact ∈ ℜN and 
y(Δx) ∈ ℜN for N ≥ 1, and where the exact solution yExact need not be known [5]. 

Furthermore it is not necessary to replace the exact solution by a discrete approximation 
obtained by running the code with a highly refined mesh, hence, bypassing the 
commonly-encountered assumption that this discrete solution is “close enough” to the 
exact-but-unknown solution. It makes the theory relevant to the case of solution 
verification where an exact solution is unknown. An application is presented to assess the 
asymptotic convergence of solutions calculated with a general-purpose, hydro-dynamics 
package developed by the Advanced Scientific Computing Shavano code project at the 
Los Alamos National Laboratory. The package, written for high-performance computing 
platforms, provides approximate solutions to the equations of motion in the Lagrangian 
frame-of-reference for multiple materials and arbitrary geometry. 

The application selected for this demonstration is the dynamic sphere test problem that 
consists of simulating the space-time propagation of a uniform stress wave initiated at the 
outer surface of a sphere. The calculation must be capable of following the wave pattern 
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and discontinuities it produces in a perfectly elastic material, as it bounces between the 
outer and inner surfaces of the sphere [6]. The test problem is relevant because spherical 
shells are representative of numerous natural and manufactured objects ranging from 
soap bubbles to marine floats or undersea diving bells. The ability to accurately predict 
their response to various loading scenarios is essential to many engineering or physics 
applications. The test problem is also selected because it possesses an exact, analytical 
solution that can be used to compare the solution error ||yExact – y(Δx)||2 estimated by our 
technique to the actual error. Calculations are performed in “pure Lagrangian” mode 
without invoking the Arbitrary Lagrangian-Eulerian (ALE) capability of the hydro-code. 

How does it work? In a nutshell, several discrete solutions y(Δxk), where sizes Δxk denote 
a sequence of mesh refinements, are used to define a functional sub-space of ℜN. 
Asymptotic convergence is studied by projecting the discrete solutions y(Δxk) into one of 
the dimensions of this sub-space. Such operation is equivalent to performing a “modal” 
decomposition of the discrete solution fields. It is shown that asymptotic convergence of 
individual projections is a necessary and sufficient condition to reach asymptotic 
convergence of the entire solution field. It is also demonstrated that the solution error 
||yExact – y(Δx)||2 can be bounded as a function of mesh size Δx without having to know 
the exact solution. It is argued that this approach provides acceptable results as long as 
the sub-space is a “good” approximation of the non-linear manifold within which the 
discrete solutions are constructed by the numerical method. Results obtained with the 
dynamic sphere problem support this hypothesis. 

Results of a mesh refinement study, where discrete solutions of the dynamic sphere 
problem are calculated from seven levels of refinement, are presented. Asymptotic 
convergence is first assessed with scalar response features. It is shown that the 
theoretical, 2nd-order rate-of-convergence is recovered, more-or-less as expected. The 
analysis then focuses on the asymptotic convergence of entire solution fields, y(Δx) ∈ ℜN. 
The technique proposed estimates values of the L2 norm of solution error ||yExact – y(Δx)||2 
at different mesh sizes Δx without using the knowledge of the exact solution (even though 
it is known for this problem). The veracity of the upper and lower bounds of solution error 
is assessed; it is shown that they compare very favorably to the true values of solution 
error for this test problem. The results suggest that the analysis technique can be applied 
with confidence to more complex problems described by continuous equations whose 
exact solutions are unknown. (Abstract approved for unlimited, public release on 
December 18, 2007, LA-UR-07-8360, Unclassified.) 
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