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ABSTRACT

Mechanical testing of elastomers and biological tissues is often accompaniedby softening phenomena
like preconditioning in early load cycles or the well-known Mullins effect. Thesoftening behavior has
frequently been modeled in the framework of continuum damage mechanics for both rubber-like mate-
rials, see e.g. [1] and references therein, and soft biological tissues, e.g. [2]. In this paper, the material
parameters of a recently presented hyperelastic model for fiber-reinforced materials [3] are allowed to
evolve in order to reflect structural alterations inside the material. As a consequence, the model does not
only predict softening and hysteresis but also accounts for residual deformations occurring after the ma-
terial has been unloaded. The model is applied to simulate the preconditioning behavior of anisotropic
soft biological tissues subjected to cyclic loading experiments. The results suggest that the general
characteristics of preconditioning with different upper load limits are well captured.

Anisotropic inelastic model

We consider composite materials consisting of an isotropic matrix andn families of reinforcing fibers
with orientation given by a unit vectorm i, i = 1, 2, ..., n. The structural tensors

L0 =
1

3
I, Li = m i ⊗m i, i = 1, 2, ..., n (1)

are introduced, whereI denotes the identity tensor of second order. Considering the objectivity require-
ment, classical invariant theory and by applying the Cayley-Hamilton theorem,a strain-energy function
for such a material can be represented in the following form [3]

W = W̄ (Ii, Ji, IIIC) , Ii = tr(CLi), Ji = tr [(cofC)Li] , IIIC = detC, i = 0, 1, ..., n, (2)

whereC denotes the right Cauchy-Green tensor andcofC = C
−TdetC. The argumentsIi, Ji andIIIC

are convex with respect to the deformation gradientF, its adjugateF−1detF and its determinantdetF
[4], respectively and form a reduced set of invariants. In a next step, so-called generalized invariants



are introduced as linear combinations with non-negative weight factorsu
(r)
i

andv
(r)
i

, i = 0, 1, ..., n (cf.
[5]). Thus, an alternative representation of the strain-energy function can be given by

W = W̃

(

Ĩr, J̃r, IIIC

)

, Ĩr =
n

∑

i=0

u
(r)
i

Ii, J̃r =
n

∑

i=0

v
(r)
i

Ji, r = 1, 2, .... (3)

The invariantsIi andJi, i = 1, 2, ..., n, describe the change of the squared values of the length of a
line element alongm i and the area of a surface element with normalm i, respectively. The influence
of these changes on the strain energy is governed by the weight factorsu

(r)
i

andv
(r)
i

. In order to take

into account inelastic phenomena, the weight factorsu
(r)
i

andv
(r)
i

are considered as internal variables
and are allowed to evolve independently. Accordingly, the elastic potential (3)1 is extended to the free
energy

Results

As a special case, the preconditioning behavior of a transversely isotropic soft biological tissue sample
subject to uniaxial cyclic loading and unloading was considered. We chose an appropriate representa-
tion of the strain-energy function (3)1 for soft biological tissues and set up evolution conditions and
equations for the internal variablesu

(r)
i

andv
(r)
i

. Representative examples for both uniaxial loading in
fiber and transverse direction and loading with increasing upper load limits are shown in Figure 1.
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Figure 1: Preconditioning of an incompressible material sample in different directions (left) and with
increasing load limits (right). Hysteresis, stabilization and permanent set areobserved.
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