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ABSTRACT

New optical structures in which periodicity plays a significant role are being developed these days. One
of most remarkable examples of such structures is the photonic crystal. Photonic crystals are composed
of periodic dielectric or metallic structures. By designing the periodic structure properly, we can make
band gaps in photonic crystals: we can prohibit propagationof light within certain ranges of frequencies
called band gaps. In addition, defects in the periodicity can cause localised modes in the vicinity of
defects, which may lead to a pass band in a band gap. Photonic crystals thus enable us to control light
freely since we can guide or store light using these phenomena. Nowadays many researchers make great
efforts to fabricate new optical devices using photonic crystals: such devices include zero-threshold
lasers, large scale optical integrated circuits etc.
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Figure 1: Periodic boundary value problems

Considering such applications, it is concluded very
important to develop designing tools for periodic
structures, especially in dynamics. Indeed, large scale
analyses are required in the design of optical de-
vices such as photonic crystals, since shapes of ac-
tual optic devices are very complicated. FM-BIEMs
(Fast Multipole Boundary Integral Equation Meth-
ods)[1,2] are good candidates as fast solvers of large
scale wave problems since FM-BIEMs require only
O(N(log N)α) operations in problems withN bound-

ary elements. However, we can find few researches on large scale periodic scattering problems other
than the works of the present author’s group[3]. In view of these backgrounds, we develop an FMM for
periodic problems for scattering problems in electromagnetics in the present study. The target problems
are doubly periodic problems in Maxwell’s equations in 3D infrequency domain.

Henceforth we express the formulation of periodic scattering problems for Maxwell’s equations in 3D.
Let D be the domain defined byD = (−∞,∞) ⊗ (−L/2, L/2) ⊗ (−L/2, L/2) which is further
subdivided intoN subdomainsD = D1 ∪ D2 ∪ · · · ∪ DN (Figure 1). In each of the subdomainsDi

we assume that the following Maxwell’s equations are satisfied:

∇× E = iωµi
H , ∇× H = −iωǫi

E in Di,
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Figure 3: Examples of models. Left: 2 dimensional array of dielectric spheres, Right: Woodpile crystal

whereω is the frequency (with thee−iωt time dependence),ǫi andµi are the dielectric constant and
the magnetic permeability for the material occupyingDi. In the subdomain which extends tox1 →
−∞, we consider the incident plane wave. On interfaces betweendifferent subdomains we impose the
continuity conditions on the tangential components ofE andH . On the periodic boundaries given by
Sp = {x| x ∈ ∂D, |x2| = L/2 or |x3| = L/2} we require the following periodic boundary conditions:

E(x1, L/2, x3) = eiβ2E(x1,−L/2, x3), E(x1, x2, L/2) = eiβ3E(x1, x2,−L/2),

H(x1, L/2, x3) = eiβ2H(x1,−L/2, x3), H(x1, x2, L/2) = eiβ3H(x1, x2,−L/2),

whereβi is the phase difference of the incident wave atxi = −L/2 andxi = L/2, expressed by
βi = Lkinc

i (i = 2, 3), andkinc

i is the wave number vector of the incident wave.
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Figure 2: Reflectance of the woodpile
crystal (d: distance between the centres
of woodpiles in thex2 or x3 direction,ω:
frequency,c: light velocity)

In this study we deal with standard and important models
in the field of photonic crystals. We show examples of the
models considered in the present study in Figure 3, where
the left figure shows a model of slab photonic crystals and
the right figure gives a model of woodpile photonic crys-
tals. In the case of the woodpile crystal, we computed the
energy reflectance and compared the results obtained with
the present method with those reported by Gralak et al[4].
We plot the energy reflectance for various wave numbers in
Figure 2. As seen in Figure 2, our results agreed well with
the most accurate results, denoted by ‘N = 9 × 9’ (solid
line) obtained by Gralak et al.
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