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ABSTRACT

In this work we consider the optimization problem

Minimize
1
2
‖Ku− f‖2

2 +
∞∑

k=1

wk |uk| over u ∈ `2. (1)

Here, K : `2 → X is a linear and injective operator mapping the sequence space `2 into a Hilbert space
X , f ∈ X and w = {wk} is a sequence satisfying wk ≥ w0 > 0.

One well understood algorithm for the solution of (1) is the so-called iterated soft-thresholding for
which convergence has been proven in [4], see also [2]. While the iterated soft-thresholding is easy
to implement it converges slow in practice (in fact the method converges linearly but with a constant
close to one [2]). Another well analyzed method is the iterated hard-thresholding which converges like
O(n−1/2) [1] (i.e. even slower than the iterated soft-thresholding but practically it is faster in many
cases).

In this article we derive an algorithm for which we prove local superlinear convergence in the infinite
dimensional setting. Our algorithm is an active set, or semismooth Newton, method and hence, the
analysis is based on the notion of slant differentiability [3]. The semismooth Newton method is easily
implementable as an active set method.

The semismooth Newton method build up on the simple fact that minimizers of the functional (1) are
characterized by

ū = Sγw(ū− γK∗(Kū− f)) for any γ > 0 (2)

where the soft-thresholding of u with the sequence w is defined as

Sw(u)k = max{0, |uk| − wk}sgn(uk).



It can be shown that the equation (2) is semismooth (or slantly differentiable), and hence, Newton’s
method may be applied.

For u ∈ `2, the active set Å(u) and the inactive set I(u) are given by

A(u) = {k ∈ N : |u− γK∗(Ku− f)|k > γ wk}
I(u) = {k ∈ N : |u− γK∗(Ku− f)|k ≤ γ wk}.

Whenever the active and inactive sets correspond to an iterate un, they will be denoted by An and In,
respectively.

The mapping F : `2 → `2,
F (u) = u− Sγw(u− γK∗(Ku− f))

is Newton differentiable. We split the operator K∗K according to

K∗K =
(

MAA MAI

MIA MII

)
.

Then a slant derivative is given by

G(u) =
(

0 0
0 IdI

)
+

(
IdA 0
0 0

)
(γK∗K) =

(
γMAA γMAI

0 IdI

)
.

The semismooth Newton method

un+1 = un −G(un)−1F (un)

can be implemented as an active set strategy where in each step just a (usually small) finite system of
linear equations has to be solved, see [5] for details. Moreover, local superlinear convergence of the
algorithm is proven in [5]. Numerical examples in [5] indicate, that the algorithm compares favorable
with existing methods.
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