
8th. World Congress on Computational Mechanics (WCCM8)
5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008)

June 30 –July 5, 2008
Venice, Italy

Error dynamics: A new paradigm in scientific computing
T.K. Sengupta1 , V. Lakshmanan1 ,* A. Dipankar2 and P. Sagaut2

1Department of Aerospace Engineering, I.I.T. Kanpur, U.P, 208016, India (tksen@iitk.ac.in)
2Institut Jean Le Rond d’Alembert, Case 162, 75252 Paris Cedex 05, France (dipankar@lmm.jussieu.fr)

Key Words: Signal and error propagation dynamics, Scientific computing, Dispersion error

ABSTRACT

The most widely used error and stability analysis is based on a method by von Neumann 1 and is
based on the assumption that the signal and the error satisfy the same equation for linear differential
equations. We establish that even for computing linear equation, the solution and error do not follow
same dynamics - a very counter-intuitive result.
We focus here on a simple linear problem with an exact solution, so that the limits of accurate compu-
tations are understood. For this purpose, we look at the one-dimensional convection equation,

∂u

∂t
+ c

∂u

∂x
= 0, c > 0, (1)

that admits non-dispersive and non-dissipative solution convecting to the right with the phase speed
c. Any inaccuracy of the computed solution is not due to nonlinearity. Using Fourier-Laplace trans-
forms we write u(x, t) =

∫

U(k, t)eikxdk. A numerical amplification factor2 is introduced as G(k) =
U(k, t + dt)/U(k, t), such that in the continuum limit one must have |G(k)| = 1 - a requirement
of neutral stability. Also, for space-time dependent problems numerical group velocity (VgN ) must be
equal to the physical group velocity and the numerical phase speed cN must be equal to c. The general
numerical solution of Eq. (1) is ūN =

∫

A0(k)[|G|]t/∆teik(x−cN t)dk for A0(k) as the initial amplitude.
It is noted that ūN satisfies2,

∂ūN

∂t
+ cN

∂ūN

∂x
= −

∫

dcN

dk

[
∫

ik′A0[|G|]t/∆teik′(x−cN t)dk′

]

dk

+

∫

Ln |G|

∆t
A0[|G|]t/∆teik(x−cN t)dk (2)

If one defines numerical error as e = u − ūN , then it’s governing equation is given by,
∂e

∂t
+ c

∂e

∂x
= −c[1 −

cN

c
]
∂ūN

∂x
−

∫

VgN − cN

k

[
∫

ik′A0[|G|]t/∆teik′(x−cN t)dk′

]

dk

−

∫

Ln |G|

∆t
A0[|G|]t/∆teik(x−cN t)dk (3)

Note that Eq. (3) is an exact equation - unlike the modified equation approaches3 , where the resultant
equation depends on the method of discretization. In contrast, Eq. (3) clubs error based on generic nu-
merical properties. For example, for a neutrally stable method, the last term is identically zero. This



establishes the futility of using stable methods, while demanding accuracy. The first term on the right
hand side (RHS) of (3) is due to the phase error and the second term contributes to the spurious disper-
sion. To show the effect of Eq. (3) we solve (1) using RK4 for time integration and OUCS3 for spatial
discretization2 . Initial wave-packet is given by u0(x) = e−8(x−x0)2cos(kx), where x0 = 6 is the centre
of the packet in physical space and kh (h = ∆x) in the k- plane. Details of the cases performed are
given below.

Cases kh c∆t/h |G|
∫ (VgN−cN )

k dk (1 − cN/c)

A 1.151 0.01 1 0.005 0.000
B 0.800 0.01 1 0.005 0.001

The contribution from dispersion error is the same for A and B. While A is chosen such that the phase
error is negligibly small, for B it is higher. Computed errors for these two cases are shown in figure
below. Error is present in both the cases, but it is more in B than in A. Presence of non-negligible error
for A shows the effect of the dispersion error term exclusively, as the contribution from phase error is
negligible, while no error is caused due to |G| 6= 1. The larger error for B shows the effect of phase
error term in Eq. (3).
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These two test cases clearly establish the need for a correct error analysis with proper role ascribed to
individual sources- as shown on the RHS of Eq. (3).
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