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ABSTRACT

A primary acute mechanism of balloon angioplasty seems to beassociated with the balloon-induced
overstretch of remnant non-diseased tissues in atherosclerotic arteries. The overstretch contributes to
the lumen enlargement and a related numerical analysis may provide a sound platform for studying
such effects. For this purpose it is necessary to model the material behavior of arterial tissues in the
supra-physiological loading regime. Cyclic uniaxial tension tests indicate a distinct anisotropic soften-
ing effect along with pronounced hysteresis, cf. Fig. 1. A first isotropic approximation of damage in
arterial walls is given in [5]. For the description of anisotropic damage based on the introduction of
scalar-valued damage variables see [1], [2].
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Figure 1: Cauchy stressσ in kPa vs. stretchλ for cyclic uniaxial tension of a media in circumferential
(green) and axial direction (red).

In this contribution we extend the constitutive model in [2]to the ability to reflect the typical hysteresis
observed in cyclic tension tests. For the representation ofthe physiological range of deformation we ap-
ply an anisotropic polyconvex strain-energy function, cf.[3], [4], in order to ensure the existence of min-
imizers and to satisfy the Legendre-Hadamard condition automatically. To account for the anisotropy



the concept of structural tensors and representation theorems for anisotropic tensor functions are used,
and the energy is formulated in terms of the basic and mixed invariants of the deformation and structural
tensor. For the description of the anisotropic damage we assume that the softening occurs mainly in the
fiber direction. Hence, we consider an additively decomposed structure of the strain-energy function,
i.e. an isotropic energy for the (undamaged) non-collagenous groundmatrix and a transversely isotropic
energy for the embedded collagen fiber families in which the damage model is considered. For each
fiber family we use a scalar-valued damage variable and consider a saturation function which accounts
for converging stress-strain curves in cyclic tension tests at fixed load levels. For the description of such
saturating damage hysteresis see reference [6]. As a numerical example we consider the circumferential
overstretch of an atherosclerotic artery, cf. Fig. 2.
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Figure 2: Deformed artery under internal pressurep = 2760.0 mmHg; distribution of a) damage vari-
ableD(1) and b) saturation variableDs,(1).

REFERENCES
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